

# Frequenzumrichter L200 Produkthandbuch Version 2

Netzanschluss 1 ~ 230V
 Netzanschluss 3 ~ 230V
 Netzanschluss 3 ~ 400V



Manual Number: NB675X Oktober 2006 HIDA\_NB675X\_061027 Bewahren Sie dieses Handbuch stets griffbereit auf

Hitachi Industrial Equipment Systems Co., Ltd.

# Sicherheitshinweise

Vor Installation und Inbetriebnahme des Frequenzumrichters lesen Sie bitte dieses Produkthandbuch sorgfältig durch und beachten Sie alle Warn- und Sicherheitshinweise. Bewahren Sie dieses Produkthandbuch stets gut erreichbar in der Nähe des Frequenzumrichters auf.

#### **Definitionen und Symbole**

Sicherheitsanweisungen beinhalten auch ein "Sicherheitssymbol" und eine Sicherheitsbezeichnung wie WARNUNG oder ACHTUNG. Die Sicherheitsbezeichnungen haben folgende Bedeutung:



**HOHE SPANNUNGEN:** Dieses Symbol kennzeichnet eine hohe Spannung. Es erfordert in diesem Bereich höchste Aufmerksamkeit, andernfalls kann es zu Personenschaden führen. Beachten Sie die Hinweise und folgen Sie den Anweisungen.



**WARNUNG:** Bei Missachtung dieser Hinweise kann Tod, schwere Körperverletzung oder erheblicher Sachschaden eintreten.



**ACHTUNG:** Bei Missachtung dieser Hinweise kann eine leichte Körperverletzung oder Sachschaden eintreten.



**Schritt 1:** Kennzeichnet einen Schritt in einem kompletten Vorgang um ein bestimmtes Ziel zu erreichen. Die Nummer des Schritts wird im Symbol angegeben.



**HINWEIS:** Kennzeichnung eines Bereichs von besonderer Bedeutung der hervorgehoben werden soll.



**TIPP:** Spezielle Anweisungen die bei der Installation oder Anwendung von Nutzen sein können. Sie gelten für erfahrene Anwender.

# Gefährlich hohe Spannung



**HOHE SPANNUNGEN:** Motorsteuerungen und elektronische Regler sind an gefährlich hohe Spannung angeschlossen. Bei Wartung von Antrieben und elektronischen Reglern gibt es ungeschützte Teile, die sich außerhalb des Gehäuses befinden und Netzspannung führen. Dabei besteht die Gefahr eines Stromschlages.

Benutzung einer Isoliermatte und Verwendung von nur einer Hand bei der Prüfung von Bauteilen. Niemals alleine arbeiten. Unterbrechung der Spannungsversorgung bevor mit der Prüfung bzw. Wartung begonnen wird. Erdung des Umrichters an den dafür vorgesehenen Anschlüssen. Benutzung einer Schutzbrille bei Arbeiten an elektronischen Reglern oder drehenden Maschinenteilen.

# Sicherheitsmaßnahmen - Zuerst sorgfältig lesen!



**WARNUNG:** Die Installation, Inbetriebnahme und Wartung dieser Antriebe darf nur von fachkundigem Personal, das mit der Funktionsweise der Ausrüstung sowie der gesamten Maschine vollständig vertraut ist, durchgeführt werden.



**WARNUNG:** Der Benutzer ist für die Gesamtanlage verantwortlich, auch für die Maschinenteile, die nicht von Hitachi beigestellt wurden. Für einen sicheren Betrieb sollte die Frequenz nicht höher als 150% des Frequenzbereichs für einen Drehstrommotor verwendet werden. Missachtung kann zu Zerstörung von Maschinenteilen oder Personenschaden führen.



**WARNUNG:** Zum Schutz sollte ein geeigneter Fehlerstromschutzschalter (Allstromsensitiver selektiver FI-Schutzschalter) verwendet werden. Ein FI-Schutzschalter als alleinige Schutzeinrichtung ist nicht zulässig. Installieren Sie Sicherungen in der Netzzuleitung. Eine Erdschlussfehlerüberwachung bietet keinen Personenschutz.



**HOHE SPANNUNGEN:** GEFAHR DURCH STROMSCHLAG. BEI ARBEITEN AM GERÄT NETZVERSORGUNG ENTFERNEN.



**WARNUNG:** Nach Ausschalten der Netzspannung mindestens 10 Minuten warten bevor mit der Wartung oder Inspektion begonnen wird. Andernfalls besteht die Gefahr eines Stromschlages.



**ACHTUNG:** Diese Anweisungen sollten gelesen und verstanden worden sein, bevor mit dem Umrichter der Serie L200 gearbeitet wird.



**ACHTUNG:** Abschaltvorrichtungen und weitere Sicherheitseinrichtungen und deren Einbauort liegen in der Verantwortlichkeit des Benutzers und werden nicht von Hitachi beigestellt.



**ACHTUNG:** Anschluss eines Thermistors an den Umrichter, der den Motor vor Überhitzung oder Überlastung schützt. Dies soll den Umrichter und Motor beim entsprechenden Ereignis sichern.



**HOHE SPANNUNGEN:** Obwohl die Anzeige "POWER" aus ist, kann noch Spannung vorhanden sein. Nach Ausschalten der Netzspannung mindestens 10 Minuten warten bevor mit der Wartung oder Inspektion begonnen wird.



**WARNUNG:** Drehende Wellen und elektrische Potentiale können sehr gefährlich sein. Darum wird dringend empfohlen alle elektrischen Arbeiten nach den entsprechenden Sicherheitsbestimmungen durchzuführen. Installation, Ausrichtung und Wartung sollte ausschließlich von qualifiziertem Personal durchgeführt werden. In diesem Produkthandbuch enthaltene Herstellerempfehlungen sollten unbedingt beachtet werden. Bevor am Gerät gearbeitet wird, immer die Netzversorgung trennen.



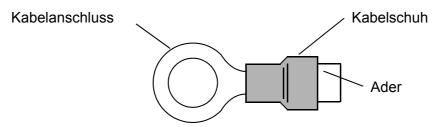
#### **ACHTUNG:**

- a) Niederohmige Schutzleiterverbindungen
- b) Jeder verwendete Motor muss sich geeignet steuern lassen.
- c) Motoren haben gefährlich bewegende Teile. Für diese Fälle müssen geeignete Schutzeinrichtungen vorhanden sein.



**ACHTUNG:** Externe Spannungen zur Alarmbearbeitung können ebenfalls lebensgefährlich sein, auch wenn der Umrichter vom Netz getrennt ist. Stellen Sie bei Öffnen des Gehäuses sicher, dass ankommende externe Spannungen ebenfalls komplett getrennt sind.




**ACHTUNG:** Leistungsklemmen für Motoren, Hauptschalter und Filter etc. müssen nach der Installation unzugänglich sein.



**ACHTUNG:** Diese Einrichtungen sollten in der Schutzklasse IP54 (siehe EN60529) oder gleichwertig installiert werden. Die Anwendung muss den Bestimmungen BS EN60204-1 entsprechen. Sehen Sie Kapitel "Geeigneter Einbauort" auf Seite 2–9.



**ACHTUNG:** Verbindungen zu Klemmen müssen betriebssicher angeschlossen werden. Dabei muss auch auf eine mechanisch sichere Verbindung geachtet werden. Verwenden Sie Kabelschuhe, wie in der Zeichnung unten dargestellt.





**ACHTUNG:** Eine allpolige Abschalteinrichtung muss mit der ankommenden Netzversorgung des Umrichters verbunden werden. Zusätzlich muss eine Schutzeinrichtung gemäß IEC947-1/IEC947-3 an diesem Punkt angeschlossen werden (siehe Kapitel "Verdrahtungsvorbereitungen" auf Seite 2–18).



**HINWEIS:** Die beschriebenen Anweisungen müssen befolgt werden, um den Sicherheitsbestimmungen zu genügen.

# Index zu Warnungen/Hinweisen in diesem Handbuch Hinweise zum geeigneten Einbauort

| A        | ACHTUNG: Gefahr eines Stromschlages. Schalten Sie die Netzspannung ab und warten 10 Min. bis Sie die vordere Abdeckung abnehmen.                                                                                                                                                                              | 2–3  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|          | ACHTUNG: Das Gerät auf einem schwer entflammbaren Material, wie z. B. einer Stahlplatte, installieren. Andernfalls besteht Brandgefahr.                                                                                                                                                                       | 2–9  |
|          | ACHTUNG: Keine leicht entflammbaren Materialien neben dem Umrichter anbringen. Andernfalls besteht Brandgefahr.                                                                                                                                                                                               | 2–9  |
| <u> </u> | ACHTUNG: Es dürfen keine Fremdkörper, in Form von Kabelschuhen, Metallspäne, Staub etc., durch die Lüfteröffnung gelangen. Andernfalls besteht Brandgefahr.                                                                                                                                                   | 2–9  |
|          | ACHTUNG: Die Montage soll so erfolgen, dass sie den Gewichtsanforderungen gemäß Kapitel 1, Tabelle "Technische Daten" standhält. Andernfalls kann der Umrichter herunterfallen und zu Personenschäden führen.                                                                                                 | 2–9  |
|          | ACHTUNG: Die Montage soll an einer senkrechten Wand erfolgen, die keinen Erschütterungen ausgesetzt ist. Andernfalls kann der Umrichter herunterfallen und zu Personenschäden führen.                                                                                                                         | 2–9  |
|          | ACHTUNG: Installieren oder verwenden Sie keinen defekten Umrichter oder Umrichter an dem Teile fehlen. Andernfalls kann es zu Personenschäden führen.                                                                                                                                                         | 2–9  |
|          | ACHTUNG: Die Installation soll in einem gut belüfteten Raum erfolgen, in dem weder direkte Sonneneinstrahlung, hohe Temperaturen, hohe Luftfeuchtigkeit, hohe Staubentwicklung, aggressive, explosive und leicht entzündliche Gase oder Schleifflüssigkeiten vorhanden sind. Andernfalls besteht Brandgefahr. | 2–9  |
|          | ACHTUNG: Einhaltung der vorgegebenen Abstände zum Umrichter, um eine geeignete Lüftung zu gewährleisten. Andernfalls können die Geräte sich erhitzen oder sich entzünden.                                                                                                                                     | 2–10 |

# Verdrahtung - Warnungen für Praxis und Verdrahtungsanforderungen

|   | WARNUNG: "Nur Verwendung von 60/75°C Kupferleitung" oder ähnliches.                                                                                                                                              | 2–19 |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|   | WARNUNG: "Feststellung der Geräteausführung"                                                                                                                                                                     | 2–19 |
|   | WARNUNG: Für Geräte mit der Endung N oder L muss eine passende Stromversorgung, die nicht mehr als 100.000 A Effektivstrom und maximal 240V Spannung liefert, benutzt werden.                                    | 2–19 |
|   | WARNUNG: Für Geräte mit der Endung H muss eine passende Stromversorgung, die nicht mehr als 100.000 A Effektivstrom und maximal 480V Spannung liefert, benutzt werden.                                           | 2–19 |
| 4 | HOHE SPANNUNGEN: Das Gerät muss eine Verbindung mit dem Schutzleiter haben. Andernfalls kann es zu einem Stromschlag führen oder es besteht Brandgefahr.                                                         | 2–19 |
| 4 | HOHE SPANNUNGEN: Verdrahtungsarbeiten müssen von qualifiziertem Personal durchgeführt werden. Andernfalls kann es zu einem Stromschlag führen oder es besteht Brandgefahr.                                       | 2–19 |
| 4 | HOHE SPANNUNGEN: Nachverdrahtungen erst ausführen, nachdem sichergestellt wurde, dass die Netzversorgung ausgeschaltet ist. Andernfalls kann es zu einem Stromschlag führen oder es besteht Brandgefahr.         | 2–19 |
| A | HOHE SPANNUNGEN: Verwenden Sie keinen Umrichter, der nicht entsprechend den Anweisungen in dieser Bedienungsanleitung angeschlossen wurde. Andernfalls kann es zu einem Stromschlag oder Personenschaden führen. | 2–19 |
|   | WARNUNG: Stellen Sie sicher, dass die Spannungsversorgung ausgeschaltet ist. Nach Ausschalten sollten Sie 10 Minuten warten bis Sie fortfahren.                                                                  | 2–25 |

### Verdrahtung - Hinweise für Praxis



ACHTUNG: Anzug der Schraubklemmen mit angegebenen Anzugsmomenten. Auf festen Sitz ALLER Schrauben achten. Andernfalls besteht Brandgefahr.

.... 2–21



ACHTUNG: Eingangsspannung muss mit der des Umrichters übereinstimmen: • 1-phasig/3-phasig 200 - 240 V 50/60Hz (bis 2,2kW) für Baureihen NFE/NFU • 3-phasig 200 - 240V 50/60Hz (über 2,2kW) für Baureihe LFU • 3-phasig 380 - 480 V 50/60Hz für Baureihe HFE

.... 2–22



ACHTUNG: Bei Verwendung eines Geräte für 3-phasigen Betrieb an einer 1-phasigen Netzversorgung, muss der Ausgangsstrom verringert werden. Andernfalls kann das Gerät zerstört werden und es besteht Brandgefahr.

.... 2–22



ACHTUNG: Keine Spannungsversorgung an den Ausgangsklemmen anschließen. Andernfalls kann das Gerät zerstört werden und es besteht Brandgefahr.

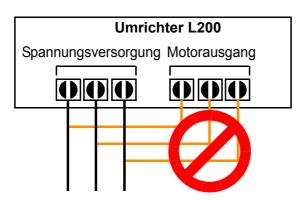
.... 2–23



ACHTUNG: Aus folgenden Gründen sollten Fehlerstromschutzschalter in der Spannungsversorgung verwendet werden: Frequenzumrichter mit CE-Filter und abgeschirmten Motorleitungen haben einen hohen Ableitstrom zum Schutzleiter. Besonders im Einschaltmoment kann dies der Grund für eine Auslösung des Fehlerstromschutzschalters sein. Bei Eingangsfiltern des Umrichters besteht die Möglichkeit, das Auslösen durch kleine Gleichströme zu verhindern. Folgendes bitte überprüfen: • Verwendung von allstromsensitiven selektiven Fehlerstromschutzschaltern mit hohem Auslösestrom. • Absicherung anderer Bauteile mit separaten Fehlerstromschutzschaltern. • Fehlerstromschutzschalter in der Eingangsverdrahtung sind kein absoluter Schutz gegen Stromschlag.

.... 2–23




ACHTUNG: Sichern Sie jede Phase der Spannungsversorgung des Umrichters mit einer eigenen Sicherung ab. Andernfalls besteht Brandgefahr.

.... 2–23



ACHTUNG: Motoranschlüsse, Fehlerstromschutzschalter und elektromagnetische Auslöseeinheiten sollten die passende Größe der entsprechenden Bauteile besitzen (Leistung muss dem Nennstrom und der Spannung entsprechen). Andernfalls besteht Brandgefahr.

.... 2-23



#### **Hinweise zum Einschalttest**



ACHTUNG: Die Kühlkörperrippen können sich erhitzen. Berührung .... 2–26 vermeiden. Andernfalls besteht Verbrennungsgefahr.



ACHTUNG: Durch Bedienung des Umrichters kann die Geschwindigkeit .... 2–26 leicht geändert werden. Prüfen Sie die Möglichkeiten und Grenzwerte des Motors bzw. der Maschine, bevor er in Betrieb geht. Andernfalls besteht die Gefahr der Beschädigung.



ACHTUNG: Wenn der Motor an einer Frequenz betrieben wird, die höher ist als der Standardwert des Umrichters (50Hz/60Hz), vergewissern Sie sich beim entsprechenden Hersteller, ob Motor und Maschine den Anforderungen standhalten. Der Motorbetrieb mit Frequenzen die vom Standard abweichen, darf nur mit Zustimmung erfolgen. Andernfalls besteht die Gefahr der Gerätezerstörung und/oder -beschädigung.



ACHTUNG: Folgende Prüfung vor und während des Einschalttests. .... 2–26
Andernfalls besteht die Gefahr der Gerätezerstörung. • Ist die
Kurzschlussbrücke zwischen den Klemmen [+1] und [+] vorhanden?
Den Umrichter NICHT OHNE diese Brücke betreiben. • Stimmt die
Drehrichtung des Motors? • Kommt es beim Hoch- bzw. Runterlauf des
Umrichters zu einer Störung? • Sind der Drehzahl- und Frequenzwert so
wie erwartet? • Sind unnormale Motorschwingungen bzw. -geräusche
vorhanden?

#### Warnungen zur Antriebsparametereinstellung



WARNUNG: Einstellung Parameter b012, elektronischer Motorschutz, .... 3–36 gemäß Nennstrom des Motortypenschilds. Bei Überschreitung des Wertes von Parameter b012 kann der Motor überhitzen bzw. zerstört werden. Parameter b012 ist einstellbar.

## Hinweise zur Antriebsparametereinstellung



ACHTUNG: Vermeidung von langen DC-Bremszeiten. Dies kann zur zusätzlichen Erwärmung des Motors führen. Bei Verwendung einer Gleichstrombremse wird zum Anschluss eines Thermistors geraten. Beziehen Sie sich auf die Angaben des Motorenherstellers über die erlaubte Bremszeit (Siehe auch "Thermistorschutz (Kaltleiterschutz)" auf Seite 4–25).

## Warnungen zum Betrieb und Überwachung



fen. Um Personenschäden zu vermeiden, vergewissern Sie sich, dass

der Start-Befehl nach Störungsquittierung nicht mehr ansteht.

## Hinweise zum Betrieb und Überwachung



ACHTUNG: Die Kühlkörperrippen können sich erhitzen. Berührung ...... 4–2 vermeiden. Andernfalls besteht Verbrennungsgefahr.



ACHTUNG: Durch Bedienung des Umrichters kann die Geschwindigkeit ...... 4–2 leicht geändert werden. Prüfen Sie die Möglichkeiten und Grenzwerte des Motors bzw. der Maschine, bevor er in Betrieb geht. Andernfalls besteht Personengefahr.



ACHTUNG: Wenn der Motor an einer Frequenz betrieben wird, die höher ist als der Standardwert des Umrichters (50Hz/60Hz), vergewissern Sie sich beim entsprechenden Hersteller, ob Motor und Maschine den Anforderungen standhalten. Der Motorbetrieb mit Frequenzen die vom Standard abweichen, darf nur mit Zustimmung erfolgen. Andernfalls besteht die Gefahr der Gerätezerstörung und/oder -beschädigung.



ACHTUNG: Der Umrichter oder andere Geräte können beschädigt ...... 4–4 werden, wenn die maximalen Strom- bzw. Spannungswerte überschritten werden.



ACHTUNG: Umschalten des DIP-Schalter "SR/SK" nur im ausgeschalte- ...... 4–9 ten Zustand des Umrichters. Andernfalls kann dies zu Beschädigungen führen.



.... 4–28

### Warnungen und Hinweise zur Fehlersuche und Wartung



WARNUNG: Die Geräte besitzen Zwischenkreiskondensatoren, die auch nach netzseitigem Ausschalten gefährlich hohe Spannungen führen. Warten Sie deshalb nach Abschalten der Netzspannung mindestens 10 Minuten bevor Sie das Gerät öffnen und daran arbeiten. Es ist darauf zu achten, dass keine spannungsführenden Teile berührt werden. Andernfalls besteht die Gefahr des elektrischen Stromschlages.



WARNUNG: Die Installation, Inbetriebnahme und Wartung dieser ...... 6–2 Antriebe darf nur von fachkundigem Personal, das mit der Funktionsweise der Ausrüstung sowie der gesamten Maschine vollständig vertraut ist, durchgeführt werden. Andernfalls besteht die Gefahr des elektrischen Stromschlages bzw. Personenschaden.

..... 6–2



WARNUNG: Entfernen Sie keine Verbindungen durch Ziehen der ...... 6–2 Verbindungsleitung (Lüfterleitung, I/O-Board). Andernfalls besteht Brand- oder Verletzungsgefahr.



ACHTUNG: Kein Anschluss des Isolationsmessgerätes an Steuerklem- .... 6–12 men für Digital-Eingänge, Analog-Eingänge etc.. Andernfalls kann der Umrichter beschädigt werden.



ACHTUNG: Niemals mit der Prüfspannung den Umrichter betreiben. .... 6–12



HOHE SPANNUNGEN: Keine Verdrahtung und Verbindungsklemmen .... 6–16 bei Betrieb des Umrichters während der Messvorgänge berühren.

# Allgemeine Warnungen und Hinweise



**WARNUNG:** Keine baulichen Änderungen am Gerät vornehmen. Andernfalls besteht die Gefahr eines elektrischen Stromschlages oder Verletzung.



**ACHTUNG:** Prüfspannungs- und Isolationstests wurden vor der Auslieferung durchgeführt, so dass kein Anlass besteht diese Tests vor dem Betrieb erneut durchzuführen.

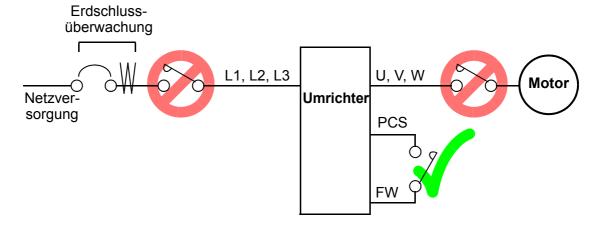


**ACHTUNG:** Verbinden oder entfernen Sie keine Verkabelung bei eingeschalteter Spannungsversorgung. Prüfen Sie keine Signale während des Betriebes.



**ACHTUNG:** Verbinden Sie den Schutzleiter mit der dafür vorgesehenen Klemme.



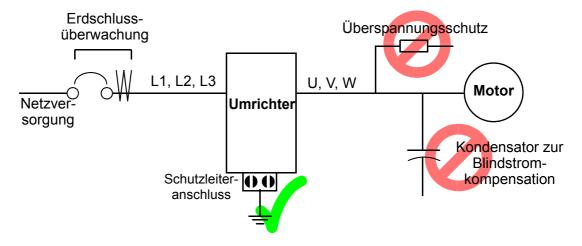

**ACHTUNG:** Bei Wartung des Gerätes nach Abschalten 10 Minuten warten, bevor das Gehäuse geöffnet wird.



**ACHTUNG:** Umrichter nicht mit dem normalen Hausmüll entsorgen. Entsorgen Sie den Umrichter dort, wo Industriemüll entsorgt wird.



**ACHTUNG:** Den Umrichter nicht durch Schalter auf der Eingangs- bzw. Ausgangsseite stoppen. Dafür einen Digital-Eingang mit der Funktion [FW] oder [RV] verwenden.




Bei einem plötzlichen Netzausfall während des Betriebes, kann das Antriebssystem nach Netzwiederkehr automatisch wieder anlaufen. Durch Einbau eines Relais/Schützes auf der Netzseite kann dieses nach Netzwiederkehr verhindert werden. Bei Verwendung der optionalen Fernbedienung und programmiertem Wiederanlauf kann dabei das System bei anstehendem Startbefehl trotzdem starten.

GEHEN SIE IN DIESEM FALL SEHR VORSICHTIG VOR !!!



**ACHTUNG:** Keine Installation von Kondensatoren zur Blindstromkompensation oder Bauteile zum Überspannungsschutz zwischen den Ausgangsklemmen des Umrichters und Motor vornehmen.





#### **ACHTUNG: MOTORDROSSEL**

Bei langen Motorleitungen, größer als 10 m, wird der Einsatz einer Motordrossel zwischen Umrichter und Motor empfohlen. Bei Verwendung eines Umrichters mit PWM-Ausgangsspannung wird dabei eine Reduzierung der Spannungsanstiegsflanken dU/dt bzw. der Spannungsspitzen V<sub>Peak</sub> hervorgerufen.

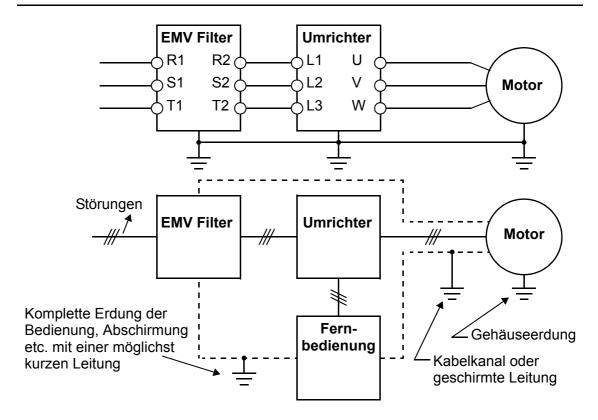


#### **ACHTUNG: EINFLUSS VON STROMSPITZEN AUF DEN UMRICHTER**

In den unten beschriebenen Fällen kann eine Stromspitze auf der Netzteilseite zur Zerstörung des Umrichters führen:

- 1. Der Unsymmetriefaktor des Netzes ist >3%.
- 2. Die Netzteilleistung ist 10mal größer als die Umrichterleistung (oder die Netzteilleistung ist 500kVA und größer).

Dort wo diese Bedingungen vorhanden sind oder die angeschlossenen Teile eine hohe Betriebssicherheit erfordern, MUSS eingangsseitig eine Netzdrossel mit 3% Spannungsabfall bei Nennstrom, unter Berücksichtigung der Spannungsversorgung des Netzteils, verwendet werden. Verwendung eines Blitzableiters bei Blitzeinschlag.




#### ACHTUNG: UNTERDRÜCKUNG VON STÖRSIGNALEN DES UMRICHTERS

Der Umrichter hat Halbleiter wie Transistoren und IGBTs. Dadurch sind elektronische Geräte (Radioempfänger, Messinstrumente etc.) die sich in der Nähe des Umrichters befinden sehr störanfällig.

Um diese Geräte vor einem fehlerhaften Betrieb, infolge der Störsignale, zu schützen, sollten diese vom Umrichter ferngehalten werden. Effektiver ist die komplette Schirmung des Umrichteraufbaus.

Ein zusätzlicher EMV-Filter auf der Eingangsseite des Umrichters reduziert die Auswirkungen der Störsignale des gewerblichen Netzes für externe Geräte.





**ACHTUNG:** Bei Störung E08 des EEPROM, geben Sie den eingestellten Wert erneut ein und speichern Sie ihn ab.



**ACHTUNG:** Bei Verwendung eines Öffners in den Einstellungen C011 - C015 für den Startbefehl [FW] oder [RV] startet der Umrichter automatisch, wenn das externe Signal ausgeschaltet ist oder die Verbindung zum Umrichter unterbrochen wurde. Verwenden



Sie niemals einen Öffner für den Startbefehl, außer wenn das Antriebssystem gegen unbeabsichtigten Betrieb geschützt ist.



**ACHTUNG:** Bei allen Zeichnungen in diesem Handbuch sind Abdeckungen und Sicherheitsbaugruppen, zur besseren Beschreibung der Details, gelegentlich entfernt dargestellt. Während des Betriebs müssen diese Einrichtungen an ihren dafür vorgesehenen Platz, entsprechend den Anweisungen im Handbuch, vorhanden sein.

### Bestimmungsgemäßer Einsatz der Geräte



**ACHTUNG:** Die Frequenzumrichter der Serie L200 sind keine Haushaltsgeräte, sondern als Komponenten ausschließlich für die Weiterverwendung zur gewerblichen Nutzung vorgesehen. Diese sind elektrische Betriebsmittel zur Steuerung von drehzahlgeregelten Antrieben mit Drehstrommotoren und zum Einbau in Maschinen oder Zusammenbau mit weiteren Komponenten zu einer Maschine bestimmt. Die Inbetriebnahme ist bei Einbau in Maschinen solange untersagt, bis festgestellt wurde, dass diese Maschine die Schutzanforderungen der Maschinenrichtlinie 89/392/EWG erfüllt; dies entspricht EN 60204. Die Verantwortung für die Einhaltung der EG-Richtlinien in der Maschinenanwendung liegt beim Weiterverwender.

# UL® Hinweise, Warnungen und Anweisungen

#### Verdrahtungswarnungen für Praxis und Leitungsquerschnitte

Die Warnungen und Anweisungen in diesem Kapitel fassen das notwendige Verfahren zusammen, um einen Umrichter entsprechend den Richtlinien der "Underwriters Laboratories<sup>®</sup> (UL)" zu installieren.



WARNUNG: "Nur Verwendung von 60/75°C Kupferleitung" oder ähnliches.



WARNUNG: "Feststellung der Geräteausführung".



**WARNUNG:** Für Geräte mit der Endung N oder L soll eine Stromversorgung, die nicht mehr als 5000 A Effektivstrom und maximal 240V Spannung liefert, benutzt werden.



**WARNUNG:** Für Geräte mit der Endung H soll eine Stromversorgung, die nicht mehr als 5000 A Effektivstrom und maximal 480V Spannung liefert, benutzt werden.



WARNUNG: "Heiße Oberfläche - Verbrennungsgefahr"



**WARNUNG:** "Einbau von Geräten mit Verschmutzungsgrad 2 bei entsprechender Umgebung."



WARNUNG: "Stromschlag - Kondensatoren sind erst nach 10 Minuten entladen."



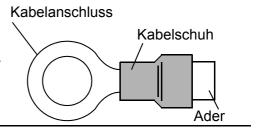
**WARNUNG:** "Zuverlässiger elektronischer Motorschutz ist in jedem Gerät vorhanden."



**WARNUNG:** Schraubenanzugsmomente und Leitungsquerschnitte sind in der unten stehenden Tabelle angegeben.

### Anzugsmoment der Klemmen und Leitungsquerschnitte

Anzugsmomente und Leitungsquerschnitte entsprechend der Tabelle


| Eingangs- | Motorleistung |       | Harrishten Bernelle | Netzversorgung                   | Anzugsmoment |       |
|-----------|---------------|-------|---------------------|----------------------------------|--------------|-------|
| spannung  | kW            | HP    | Umrichter-Baureihe  | Leitungsquerschnitt<br>(mm²/AWG) | ft-lbs       | (N-m) |
|           | 0,2           | 1/4   | L200-002NFE(F)2     |                                  |              |       |
|           | 0,4           | 1/2   | L200-004NFE(F)2     | 1,5 mm <sup>2</sup> /AWG16       | 0,6          | 0,8   |
|           | 0,55          | 3/4   | L200-005NFE(F)2     |                                  |              |       |
| 200V      | 0,75          | 1     | L200-007NFE(F)2     | 1,5 mm <sup>2</sup> /AWG14       |              | 1,2   |
|           | 1,1           | 1 1/2 | L200-011NFE(F)2     | 1,511111 /AVVG14                 | 0,9          |       |
|           | 1,5           | 2     | L200-015NFE(F)2     | 4 mm <sup>2</sup> /AWG12         |              |       |
|           | 2,2           | 3     | L200-022NFE(F)2     | 6 mm <sup>2</sup> /AWG10         |              |       |
|           | 0,4           | 1/2   | L200-004HFE(F)2     |                                  | 0,9          | 1,2   |
|           | 0,75          | 1     | L200-007HFE(F)2     | 1,5 mm <sup>2</sup> /AWG16       |              |       |
|           | 1,5           | 2     | L200-015HFE(F)2     | 1,5111111 /AVVG10                |              |       |
| 400V      | 2,2           | 3     | L200-022HFE(F)2     |                                  |              |       |
| 4000      | 3,0           | 4     | L200-030HFE(F)2     | 1,5 mm <sup>2</sup> /AWG14       |              |       |
|           | 4,0           | 5     | L200-040HFE(F)2     | 1,5 111111 /AVVG 14              |              |       |
|           | 5,5           | 7 1/2 | L200-055HFE(F)2     | 4 mm <sup>2</sup> /AWG12         | 1.5          | 2,0   |
|           | 7,5           | 10    | L200-075HFE(F)2     | + IIIII /AWG12                   | 1,5          | 2,0   |

| Steuerleitungen              | Leitungsquerschnitt                     | Anzugsmoment |             |  |
|------------------------------|-----------------------------------------|--------------|-------------|--|
| Otedeneitungen               | (mm²/AWG) ft-lbs                        |              | (N-m)       |  |
| Digitale und analoge Klemmen | 0,14 - 0,75 mm <sup>2</sup> /AWG30 - 16 | 0,16 - 0,19  | 0,22 - 0,25 |  |
| Relaisklemmen                | 0,14 - 0,75 mm <sup>2</sup> /AWG30 - 14 | 0,37 - 0,44  | 0,5 - 0,6   |  |

# Kabelverbindungen



WARNUNG: Leitungsquetschverbindungen müssen dem Standard UL und CSA der Größe der verwendeten Verdrahtung entsprechen. Die Quetschverbindungen müssen mit dem geeigneten Werkzeug gemäß der Herstellerangaben angefertigt werden.



### Hauptschalter und Sicherungsgrößen

Der Hauptschalter, an den der Umrichter angeschlossen wird, muss eine Nennspannung von 600V (gemäß UL-Liste) haben oder es werden Sicherungen (gemäß UL-Liste) wie in der untenstehenden Tabelle verwendet.

| Eingangs- | Motorleistung |       | Umrichter-Baureihe   | Sicherung (A)                     |  |  |
|-----------|---------------|-------|----------------------|-----------------------------------|--|--|
| spannung  | kW            | HP    | - Omrichter-Baureine | (UL-Liste, Klasse J, 600V)        |  |  |
|           | 0,2           | 1/4   | L200-002NFE(F)2      | 10                                |  |  |
|           | 0,4           | 1/2   | L200-004NFE(F)2      | 10                                |  |  |
|           | 0,55          | 3/4   | L200-005NFE(F)2      | 10                                |  |  |
| 000)      | 0,75          | 1     | L200-007NFE(F)2      | 16                                |  |  |
| 200V      | 1,1           | 1 1/2 | L200-011NFE(F)2      | 16                                |  |  |
|           | 1,5           | 2     | L200-015NFE(F)2      | 20 (einphasig)<br>16 (dreiphasig) |  |  |
|           | 2,2           | 3     | L200-022NFE(F)2      | 30 (einphasig)<br>20 (dreiphasig) |  |  |
|           | 0,4           | 1/2   | L200-004HFE(F)2      | 3                                 |  |  |
|           | 0,75          | 1     | L200-007HFE(2)2F     | 6                                 |  |  |
|           | 1,5           | 2     | L200-015HFE(F)2      | 10                                |  |  |
| 400V      | 2,2           | 3     | L200-022HFE(F)2      | 10                                |  |  |
| 4000      | 3,0           | 4     | L200-030HFE(F)2      | 16                                |  |  |
|           | 4,0           | 5     | L200-040HFE(F)2      | 16                                |  |  |
|           | 5,5           | 7 1/2 | L200-055HFE(F)2      | 20                                |  |  |
|           | 7,5           | 10    | L200-075HFE(F)2      | 25                                |  |  |

#### **Elektronischer Motorschutz**

Umrichter L200 von Hitachi haben einen zuverlässigen elektronischen Motorschutz, der von den passenden Einstellungen folgender Parameter abhängig ist:

- b012 "Elektronischer Motorschutz"
- b212 "Elektronischer Motorschutz (2. Parametersatz)"

Einstellung des Motornennstroms in den oben angegebenen Parametern. Der Einstellbereich ist 0,2 - 1,2 (20% - 120%) des Nennstroms.



**WARNUNG:** Bei Anschluss von zwei oder mehrerer Motoren an den Umrichter, können diese nicht mit dem elektronischen Motorschutz geschützt werden. Verwenden Sie in diesem Fall für jeden Motor ein externes Überstromrelais.

# Inhaltsverzeichnis

| <u>Sicherheitshinweise</u>                                                 |                                        |
|----------------------------------------------------------------------------|----------------------------------------|
| Gefährlich hohe Spannung                                                   | <u>i</u>                               |
| Sicherheitsmaßnahmen - Zuerst sorgfältig lesen!                            | . <u>ii</u>                            |
| Index zu Warnungen/Hinweisen in diesem Handbuch                            | <u>iv</u>                              |
| Allgemeine Warnungen und Hinweise  UL® Hinweise, Warnungen und Anweisungen | <u>x</u><br><u>xiii</u>                |
|                                                                            | <u>XIII</u>                            |
| <u>Inhaltsverzeichnis</u>                                                  |                                        |
| <u>Revisionen</u>                                                          | <u>xix</u>                             |
| <u>Kontaktadressen</u>                                                     | <u>xxi</u>                             |
| Kapitel 1: Vor Inbetriebnahme                                              |                                        |
| Einleitung                                                                 | <u>1–2</u>                             |
| Technische Daten L200                                                      | 1-2<br>1-5<br>1-18<br>1-23             |
| Grundlagen frequenzgeregelter Antriebe                                     | <u>1–18</u>                            |
| Häufig gestellte Fragen                                                    | <u>1–23</u>                            |
| Kapitel 2: Umrichteraufbau und Installation                                |                                        |
| Übersicht der Umrichtereigenschaften                                       | <u>2–2</u>                             |
| Aufbau eines Antriebssystem                                                | <u>2–2</u><br><u>2–7</u><br><u>2–8</u> |
| Schrittweise Installation Einschalttest                                    | <u>2–8</u><br>2–25                     |
| Bedienfeld                                                                 | <u>2–23</u><br>2–27                    |
|                                                                            |                                        |
| Kapitel 3: Konfiguration Antriebsparameter                                 |                                        |
| Auswahl der Programmiereinheit                                             | <u>3–2</u>                             |
| Bedienung über Tastatureinheit Cruppe d": Manitorfunktionen                | 3-3<br>3-6<br>3-9                      |
| Gruppe "d": Monitorfunktionen  Gruppe "F": Basisfunktionen                 | <u>3–0</u><br>3–9                      |
| Gruppe "A": Standardfunktionen                                             | <u>3–10</u>                            |
| Gruppe "b": Feinabstimmungsfunktionen                                      | 3–34                                   |
| Gruppe "C": Steuerfunktionen                                               | <u>3–49</u>                            |
| Gruppe "H": Motorkonstanten Gruppe "P": BUS-Kommunikation                  | <u>3–64</u><br><u>3–65</u>             |
| Gruppe "F BOS-Korrinariikatiori                                            | <u>5–05</u>                            |
| Kapitel 4: Betrieb und                                                     |                                        |
| <u>Überwachung</u>                                                         |                                        |
| Einleitung                                                                 | <u>4–2</u>                             |
| Verbindung zur SPS und anderen Geräten                                     | 4-4                                    |

# xviii

| Beschreibung der Steuersignale  Übersicht Steuerfunktionen  Verwendung Eingangsklemmen  Verwendung Ausgangsklemmen  Analog-Eingänge  Analog-Ausgang  PID-Regler  Konfiguration für Mehrmotorenbetrieb | 4-6<br>4-7<br>4-9<br>4-36<br>4-54<br>4-56<br>4-57<br>4-60 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Kapitel 5: Umrichter Zusatzteile  Einleitung Beschreibung der Komponenten Generatorisches Bremsen                                                                                                     | 5-2<br>5-3<br>5-4                                         |
| Kapitel 6: Fehlersuche und Wartung  Fehlersuche Auslöseereignisse, Störspeicher, Bedingungen Wiederherstellen der Werkseinstellungen Wartung und Kontrolle                                            | 6-2<br>6-6<br>6-9<br>6-10                                 |
| Anhang A: Wörterbuch und Literaturverzeichnis  Wörterbuch  Literaturverzeichnis                                                                                                                       | <u>A-2</u><br><u>A-8</u>                                  |
| Anhang B: ModBus Netzwerk Kommunikation  Einleitung Verbindung des Umrichters mit dem ModBus Datenübertragungsprotokoll ModBus Datenliste                                                             | B-2<br>B-3<br>B-6<br>B-20                                 |
| Anhang C: Einstellungen Antriebsparameter  Einleitung Parametereinstellungen über Tastatur                                                                                                            | <u>C-2</u><br><u>C-2</u>                                  |
| Anhang D: CE-EMV Installations-Richtlinien CE-EMV Installations-Richtlinien Hitachi EMV-Vorschläge Index                                                                                              | D-2<br>D-6                                                |



# Revisionen

#### Revisionshistorie

| Nr. | Revisionserläuterungen                                                                     | Erscheinungs-<br>datum | Handbuch<br>Nr. |
|-----|--------------------------------------------------------------------------------------------|------------------------|-----------------|
|     | Veröffentlichung des Handbuchs NB660X                                                      | März 2004              | NB660X          |
| 1   | Revision A Seiten 3–37 bis 3–39, B–34 – Zusätzliche Beschreibungen für Parameter b032      | April 2004             | NB660XA         |
| 2   | Produkthandbuch um Funktionen und Einstellmöglich-<br>keiten der Geräteversion 2 erweitert | September<br>2006      | NB675X          |

### Kontaktadressen

Hitachi America, Ltd. Power and Industrial Division 50 Prospect Avenue Tarrytown, NY 10591

U.S.A.

Phone: +1-914-631-0600 Fax: +1-914-631-3672

Hitachi Europe GmbH Am Seestern 18 D-40547 Düsseldorf

Germany

Phone: +49-211-5283-0 Fax: +49-211-5283-649

Hitachi Asia Ltd. 16 Collyer Quay #20-00 Hitachi Tower, Singapore 049318

Singapore

Phone: +65-538-6511 Fax: +65-538-9011

Hitachi Asia (Hong Kong) Ltd. 7th Floor, North Tower World Finance Centre, Harbour City Canton Road, Tsimshatsui, Kowloon Hong Kong

Phone: +852-2735-9218 Fax: +852-2735-6793 Hitachi Australia Ltd. Level 3, 82 Waterloo Road North Ryde, N.S.W. 2113

Australia

Phone: +61-2-9888-4100 Fax: +61-2-9888-4188

Hitachi Industrial Equipment Systems Co, Ltd.

AKS Building, 3, Kanda Neribei-cho Chiyoda-ku, Tokyo, 101-0022

Japan

Phone: +81-3-4345-6910 Fax: +81-3-4345-6067

Hitachi Industrial Equipment Systems Co, Ltd.

Narashino Division

1-1, Higashi-Narashino 7-chome Narashino-shi, Chiba 275-8611

Japan

Phone: +81-47-474-9921 Fax: +81-47-476-9517



**HINWEIS:** Um technische Unterstützung für Ihren Hitachi Frequenzumrichter zu erhalten, wenden Sie sich an Ihren Hitachi Händler, von dem Sie den Umrichter bezogen haben oder das Verkaufsbüro aus der Liste oben. Folgende Informationen sollten für eventuelle Rückfragen zur Verfügung stehen:

- 1. Baureihe
- 2. Kaufdatum
- 3. Serien-Nummer (MFG No.)
- 4. Kurze Fehlerbeschreibung

Bei unleserlichem Typenschild nennen Sie ihrer Hitachi Vertretung andere leserliche Typenangaben. Um unvorhersehbare Stillstandszeiten zu vermeiden, raten wir zur Lagerung eines Ersatzgerätes.



# Vor Inbetriebnahme

| In diesem Kapitel                        | Seite |
|------------------------------------------|-------|
| — Einleitung                             | 2     |
| — Technische Daten L200                  | 5     |
| — Grundlagen frequenzgeregelter Antriebe | 18    |
| — Häufig gestellte Fragen                | 23    |

# **Einleitung**

## Hauptcharakteristik

Die Schaltungstechnik der Umrichter ist auf dem neuesten Stand und bietet einen hohen Funktionsstandard. Die Gehäuseabmessungen sind, entsprechend dem angeschlossenen Motor, sehr klein. Die Hitachi Produktserie L200 deckt einen Leistungsbereich für verschiedenste Motorgrößen ab, entweder mit einer Eingangsspannung von 230 VAC oder 400 VAC.

Die Hauptcharakteristiken sind:

- · Baureihe 200V und 400V
- US- oder Europa-Version verfügbar (Länderspezifische Eingangsspannungen und Grundwerte)
- Integrierte RS-485 ModBus-Schnittstelle als Standard
- Neue Funktionen der Strombegrenzung
- 16 programmierbare Festfrequenzen

HITACHI

HZ
A
RUN
FUNO
1 ② STR

FUNO
1 ② STR

FUNO
1 ② STR

LEOTO

A WARNING ◆ 危険
HAZARD OF PERSONAL INJURY OR
ELECTRIC SHOCK
Disconnect incoming power and wait
5 minutes before opening front cover.
けが、範疇の身を元形り、
適性の最近に影響の影を見解し、その夢に歩うとと、
意味の場合が悪意に影響けること。
意味の場合の表面に影響けること。

L200-037LFU

Die Eigenschaften der Hitachi Umrichter gleichen viele der üblichen Kompromisse zwischen Geschwindigkeit, Drehmoment und Wirkungsgrad aus.

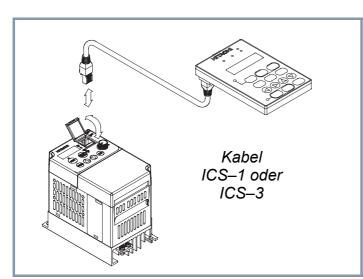
Die Leistungsmerkmale sind:

 Dauerbetrieb mit 100% Drehmoment in einem Bereich von 1:10 (6/60 Hz / 5/50 Hz) ohne Leistungsreduzierung möglich

Folgendes Zubehör ist für Hitachi Frequenzumrichter verfügbar:

- Fernbedienung
- Einbausatz für Tastaturblenden und DIN-Aadapter für Hutschienenmontage (35mm Schienengröße)

## **Optionale Bedienerschnittstelle**


Der Umrichter L200 kann an eine externe Bedientastatur (OPE–SRmini) angeschlossen werden. Dieses ermöglicht eine Fernbedienung des Gerätes (unten, links). Mit einem Kabel (ICS–1 oder ICS–3, 1m oder 3m) wird die Verbindung zwischen Tastatur und Umrichter hergestellt.

Hitachi bietet einen Tastatureinbausatz an (unten, rechts). Dieser beinhaltet einen Montageflansch, Dichtring, Tastatur und diverses Befestigungsmaterial. Die Tastatur mit Potenti-



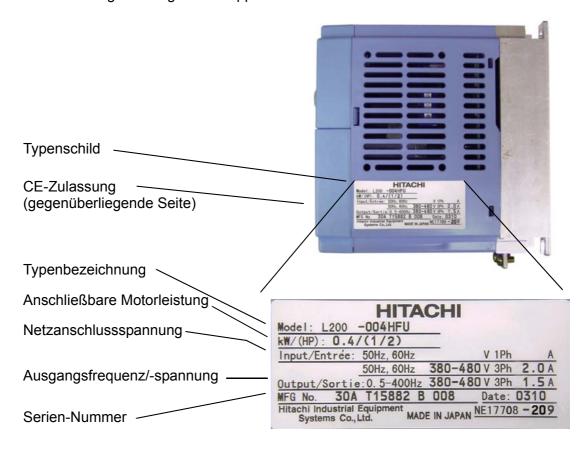
OPE-SRmini

ometer kann für eine Installation der Anforderung NEMA1 montiert werden. Um den Installationsanforderungen NEMA 4X zu genügen, bietet der Einbausatz die Möglichkeit des Einsatzes einer Tastatur ohne Potentiometer-Drehknopf (4X–KITmini).



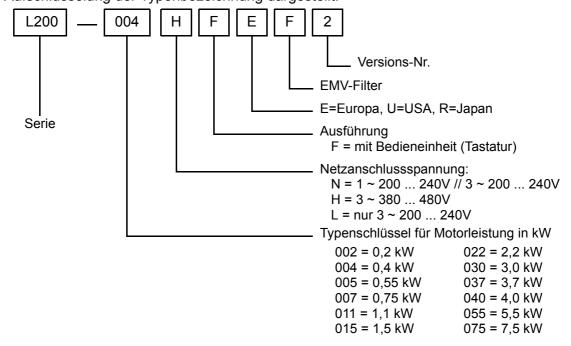


Programmier- /Kopiergerät - Das optionale Programmier- /Kopiergerät ist rechts dargestellt (SRW-0EX). Es ist 2-zeilig und zeigt Parameter als Funktionscode und als Klartext. Damit können Daten vom Umrichter ausgelesen werden (Upload). Anschließend kann das Gerät an einen anderen Umrichter angeschlossen werden, um dann die ausgelesenen Daten in den Umrichter zu übertragen (Download). Dieses Gerät stellt sich als sinnvoll dar, wenn gleiche Parametersätze in mehrere Umrichter übertragen werden müssen.


Andere Bedienerschnittstellen sind bei Ihrem Hitachi Distributoren verfügbar. Sprechen Sie ihn für mehr Informationen an.



SRW-0EX


### **Umrichter Typenschild**

Hitachi Umrichter L200 haben das Typenschild, wie unten dargestellt, an der rechten Gehäuseseite. Stellen Sie sicher, dass die technischen Daten auf dem Typenschild mit den Anforderungen bezüglich der Applikation übereinstimmen.



## Typenbezeichnung

Die Typenbezeichnung eines Umrichters enthält wichtige Informationen. Unten ist eine Aufschlüsselung der Typenbezeichnung dargestellt:



# **Technische Daten L200**

### Modellspezifische Daten der Baureihen 200V und 400V

Die folgende Tabelle zeigt technische Daten der Umrichter L200 der Baureihe 200V und 400V. Die "Allgemeine Beschreibungen" auf Seite 1–10 gelten für beide Baureihen (200V / 400V).

| Begriff                                     |                                             |    | 200V Baureihe                                        |                                                                      |                           |                                                                      |            |
|---------------------------------------------|---------------------------------------------|----|------------------------------------------------------|----------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------|------------|
| Umrichter<br>L200,<br>200V Modell           | EU Version                                  |    | 002NFE(F)2                                           | 004NFE(F)2                                                           | 005NFE(F)2                | 007NFE(F)2                                                           | 011NFE(F)2 |
| Anschließbare                               |                                             | kW | 0,2                                                  | 0,4                                                                  | 0,55                      | 0,75                                                                 | 1,1        |
| Motornennleistu                             | ng *2                                       | HP | 1/4                                                  | 1/2                                                                  | 3/4                       | 1                                                                    | 1,5        |
| Gerätenenn-                                 | 230V                                        |    | 0,5                                                  | 1,0                                                                  | 1,1                       | 1,5                                                                  | 1,9        |
| leistung (kVA)                              | 240V                                        |    | 0,5                                                  | 1,0                                                                  | 1,2                       | 1,6                                                                  | 2,0        |
| Netzanschlusssp                             | bannung                                     |    | ;                                                    | 3 ~ 200 2                                                            | 40V ±10%,                 | 50/60 Hz ±5 <sup>0</sup><br>50/60 Hz ±5 <sup>0</sup><br>LFU nur 3-pl | %,         |
| Integrierter<br>EMV-Filter                  | EU Version Einphasenfilter, Kategorie A2 *5 |    |                                                      |                                                                      |                           |                                                                      |            |
| Eingangs-                                   | 1-phasig                                    |    | 3,1                                                  | 5,8                                                                  | 6,7                       | 9,0                                                                  | 11,2       |
| nennstrom (A)                               | 3-phasig                                    |    | 1,8                                                  | 3,4                                                                  | 3,9                       | 5,2                                                                  | 6,5        |
| Ausgangsnenns                               | pannung *3                                  |    | 3 ~ 0 - 200 240V (entsprechend der Eingangsspannung) |                                                                      |                           |                                                                      |            |
| Ausgangsnenns                               | trom (A)                                    |    | 1,4                                                  | 2,6                                                                  | 3,0                       | 4,0                                                                  | 5,0        |
| Wirkungsgrad (% Ausgangsnenns               |                                             |    | 90,5                                                 | 93,3                                                                 | 94,4                      | 95,1                                                                 | 96,2       |
| Verlustleistung                             | bei 70%                                     |    | 16                                                   | 22                                                                   | 23                        | 27                                                                   | 30         |
| (W)                                         | bei 100%                                    |    | 19                                                   | 27                                                                   | 28                        | 34                                                                   | 42         |
| Startmoment *7                              |                                             |    | 100% bei 6Hz                                         |                                                                      |                           |                                                                      |            |
| Bremsung Zurückspeisung in Zwischenkreis *8 |                                             |    |                                                      |                                                                      | 100%: ≤ 50H<br>50%: ≤ 60H |                                                                      |            |
|                                             | Gleichstrom-<br>bremse                      |    |                                                      | Einschaltdauer, Einschaltfrequenz und Einschaltmoment programmierbar |                           |                                                                      |            |
| Masse                                       | EU<br>Version<br>-NFEF2                     | kg | 0,8                                                  | 0,95                                                                 | 0,95                      | 1,4                                                                  | 1,4        |
|                                             | EU<br>Version<br>-NFE2                      | kg | 0,7                                                  | 0,85                                                                 | 0,85                      | 1,8                                                                  | 1,8        |

Fußnoten der vorherigen und nachfolgenden Tabellen:

Hinweis 1: Schutzklasse gemäß JEM 1030.

Hinweis 2: Der anzuschließende Motor entspricht einem Standard Hitachi 3-Phasen-Motor (4polig). Bei Verwendung eines anderen Motors darauf achten, dass der Motornennstrom nicht überschritten wird.

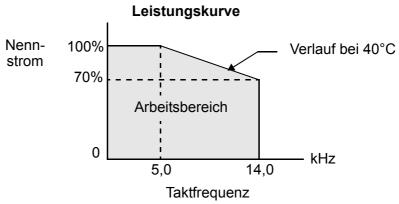
**Hinweis 3:** Die Ausgangsspannung reduziert sich entsprechend der Netzanschlussspannung (außer bei der Funktion AVR). Sie kann nicht höher als die Netzanschlussspannung sein.

**Hinweis 4:** Wird der Motor über 50/60 Hz betrieben, erkundigen Sie sich bei Ihrem Motorhersteller bezüglich der maximalen Drehzahl.

**Hinweis 5:** Bei Verwendung eines dreiphasigen Gerätes muss der einphasige Filter gegen einen geeigneten dreiphasigen ausgetauscht werden.

**Hinweis 6:** Anerkannte Eingangsspannungskategorien: • 460 ... 480 VAC - Überspannungskategorie 2

• 380 ... 460 VAC - Überspannungskategorie 3


Um Überspannungskategorie 3 zu erreichen, einen geerdeten und im Stern geschalteten EN- oder IEC-konformen Isolationstransformator einsetzen (Niederspannungsrichtlinie).

**Hinweis 7:** Bei Nennspannung, wenn ein Standard Hitachi 3-Phasen-Motor (4polig) verwendet wird.

Hinweis 8: Das Bremsmoment durch kapazitive Rückführung ist das durchschnittliche Verzögerungsmoment bei kürzester Verzögerung (Abschaltung von 50/60 Hz ausgehend). Kein kontinuierlich generatorisches Bremsmoment. Das durchschnittliche Verzögerungsmoment ist lastabhängig. Dieser Wert reduziert sich bei Betrieb über 50 Hz. Bei großen generatorischem Bremsmoment muss ein optionaler Bremswiderstand verwendet werden.

**Hinweis 9:** Die Maximalfrequenz wird bei 9,8V der Eingangsspannung 0 - 10V oder 19,6mA des Eingangstroms 4 - 20mA erreicht. Wenn diese Charakteristik für Ihre Applikation nicht ausreichend ist, wenden Sie sich an Ihre Hitachi Vertretung.

**Hinweis 10:** Betreiben des Umrichters außerhalb des unten dargestellten Arbeitsbereiches, kann Zerstörung bzw. Verkürzung der Lebensdauer zur Folge haben. Änderung des Parameters Taktfrequenz (b083) in Abstimmung mit dem zu erwartenden Ausgangsstrom.



**Hinweis 11:** Die Lagerungstemperatur bezieht sich auf die kurzfristige Temperaturänderung während des Transports.

**Hinweis 12:** Entsprechend den Testverfahren in JIS C0040 (1999) beschrieben. Bei Modelltypen die vom Standard ausgeschlossen sind, wenden Sie sich an Ihre Hitachi Vertretung.

#### ... weitere Technische Daten L200

| Begriff                                        |                                       |    | 200V Baureihe                                                                                                 |                |   |   |   |
|------------------------------------------------|---------------------------------------|----|---------------------------------------------------------------------------------------------------------------|----------------|---|---|---|
| Umrichter<br>L200,<br>200V Modell              | EU Versior                            | 1  | 015NFE(F)2                                                                                                    | 022NFE(F)2     | _ | _ | _ |
| Anschließbare                                  |                                       | kW | 1,5                                                                                                           | 2,2            | _ | _ | _ |
| Motornennleistu                                | ng *2                                 | HP | 2                                                                                                             | 3              | _ | _ | _ |
| Gerätenenn-                                    | 230V                                  |    | 2,8                                                                                                           | 3,9            | _ | _ | _ |
| leistung (kVA)                                 | 240V                                  |    | 2,9                                                                                                           | 4,1            | _ | _ | _ |
| Netzanschlussspannung                          |                                       |    | 1 ~ 200 240V ±10%, 50/60 Hz ±5%,<br>3 ~ 200 240V ±10%, 50/60 Hz ±5%,<br>(037LFU, 055LFU, 075LFU nur 3-phasig) |                |   |   |   |
| Integrierter<br>EMV-Filter                     | EU Version                            |    | Einphase<br>Kategorie                                                                                         |                |   | _ |   |
| Eingangs-                                      | 1-phasig                              |    | 16,0                                                                                                          | 22,5           | _ | _ | _ |
| nennstrom (A)                                  | nennstrom (A) 3-phasig                |    | 9,3                                                                                                           | 13,0           | _ | _ | _ |
| Ausgangsnenns                                  | pannung *3                            |    | 3 ~ 0 - 200 240V (entsprechend der Eingangsspannung)                                                          |                |   |   |   |
| Ausgangsnenns                                  | Ausgangsnennstrom (A)                 |    |                                                                                                               | 10,0           | _ | _ | _ |
| Wirkungsgrad (%) bei 100%<br>Ausgangsnennstrom |                                       |    | 96,3                                                                                                          | 95,5           |   |   | _ |
| Verlustleistung                                | bei 70%                               |    | 39                                                                                                            | 62             | _ | _ | _ |
| (W)                                            | bei 100%                              |    | 19                                                                                                            | 27             |   |   |   |
| Startmoment *7                                 |                                       |    | 100% bei 6Hz                                                                                                  |                |   |   |   |
| Bremsung                                       | Zurückspeisung in<br>Zwischenkreis *8 |    | 50%:<br>≤ 60Hz                                                                                                | 20%:<br>≤ 60Hz | _ |   |   |
|                                                | Gleichstrom-<br>bremse                |    | Einschaltdauer, Einschaltfrequenz und Einschaltmoment programmierbar                                          |                |   |   |   |
| Masse                                          | EU<br>Version<br>-NFEF2               | kg | 1,9                                                                                                           | 1,9            | _ | _ | _ |
|                                                | EU<br>Version<br>-NFE2                | kg | 1,8                                                                                                           | 1,8            | _ | _ | _ |

| Begriff                                        |                                               |            | 400V Baureihe                                                        |             |            |             |
|------------------------------------------------|-----------------------------------------------|------------|----------------------------------------------------------------------|-------------|------------|-------------|
| Umrichter<br>L200,<br>400V Modell              | EU Versior                                    | ו          | 004HFE(F)2                                                           | 007HFE(F)2  | 015HFE(F)2 | 022HFE(F)2  |
| Anschließbare                                  | ~                                             |            | 0,4                                                                  | 0,75        | 1,5        | 2,2         |
| Motornennleistu                                | ng ^2                                         | HP         | 1/2                                                                  | 1           | 2          | 3           |
| Gerätenennleistung (460V) kVA                  |                                               | 1,1        | 1,9                                                                  | 2,9         | 4,2        |             |
| Netzanschlusssp                                | pannung *6                                    |            | 3 ~ 380 480V ±10%, 50/60 Hz ±5%                                      |             |            |             |
| Integrierter<br>EMV- Filter                    | EU Version                                    |            | Dreiphasenfilter, Kategorie A2 *5                                    |             |            |             |
| Eingangsnennsti                                | rom (A)                                       |            | 2,0                                                                  | 3,3         | 5,0        | 7,0         |
| Ausgangsnennspannung *3                        |                                               |            | 3 ~ 0 - 380 480V (entsprechend der Eingangsspannung)                 |             |            |             |
| Ausgangsnennstrom (A)                          |                                               |            | 1,5                                                                  | 2,5         | 3,8        | 5,5         |
| Wirkungsgrad (%) bei 100%<br>Ausgangsnennstrom |                                               |            | 93,5                                                                 | 94,0        | 95,3       | 95,7        |
| Verlustleistung                                | bei 70%                                       |            | 20                                                                   | 30          | 45         | 65          |
| (W)                                            | bei 100%                                      |            | 26                                                                   | 42          | 70         | 95          |
| Startmoment *7                                 |                                               |            | 100% bei 6Hz                                                         |             |            |             |
| Bremsung                                       | Zurückspe<br>sung in<br>Zwischen-<br>kreis *8 | <b>i</b> - |                                                                      | 50%: ≤ 60Hz |            | 20%: ≤ 60Hz |
|                                                | Gleichstrom-<br>bremse                        |            | Einschaltdauer, Einschaltfrequenz und Einschaltmoment programmierbar |             |            |             |
| Masse                                          | EU<br>Version<br>-HFEF2                       | kg         | 1,4                                                                  | 1,8         | 1,9        | 1,9         |
|                                                | EU<br>Version<br>-HFE2                        | kg         | 1,3                                                                  | 1,7         | 1,8        | 1,8         |

| Begriff                                        |                                                 |     | 400V Baureihe                                                        |            |            |            |  |
|------------------------------------------------|-------------------------------------------------|-----|----------------------------------------------------------------------|------------|------------|------------|--|
| Umrichter L200,<br>400 V Modell                | EU Version                                      | 1   | 030HFE(F)2                                                           | 040HFE(F)2 | 055HFE(F)2 | 075HFE(F)2 |  |
| Anschließbare<br>Motornennleistung *2          |                                                 | kW  | 3,0                                                                  | 4,0        | 5,5        | 7,5        |  |
|                                                |                                                 | HP  | 4                                                                    | 5          | 7,5        | 10         |  |
| Gerätenennleistu                               | ıng (460V) l                                    | κVA | 6,2                                                                  | 6,6        | 10,3       | 12,7       |  |
| Netzanschlusssp                                | annung *6                                       |     | 3 ~ 380 480V ±10%, 50/60 Hz ±5%                                      |            |            |            |  |
| Integrierter<br>EMV-Filter                     | EU Version                                      |     | Dreiphasenfilter, Kategorie<br>A2                                    |            | _          |            |  |
| Eingangsnennstr                                | rom (A)                                         |     | 10,0                                                                 | 11,0       | 16,5       | 20,0       |  |
| Ausgangsnennsp                                 | pannung *3                                      | 1   | 3 ~ 0 - 380 480V (entsprechend der Eingangsspannung)                 |            |            |            |  |
| Ausgangsnennstrom (A)                          |                                                 |     | 7,8                                                                  | 8,6        | 13         | 16         |  |
| Wirkungsgrad (%) bei 100%<br>Ausgangsnennstrom |                                                 |     | 95,7                                                                 | 95,9       | 96,6       | 97,0       |  |
| Verlustleistung                                | bei 70%                                         |     | 90                                                                   | 95         | 135        | 165        |  |
| (W)                                            | bei 100%                                        |     | 130                                                                  | 150        | 187        | 227        |  |
| Startmoment *7                                 |                                                 |     | 100% bei 6Hz                                                         |            |            |            |  |
| Bremsung                                       | Zurückspei-<br>sung in<br>Zwischen-<br>kreis *8 |     |                                                                      | 20%: ≤     | ≤ 60Hz     |            |  |
|                                                | Gleichstrom-<br>bremse                          |     | Einschaltdauer, Einschaltfrequenz und Einschaltmoment programmierbar |            |            |            |  |
| Masse                                          | EU<br>Version<br>-HFEF2                         | kg  | 1,9                                                                  | 1,9        | 3,8        | 5,7        |  |
|                                                | EU<br>Version<br>-HFE2                          | kg  | 1,8                                                                  | 1,8        | 3,5        | 5,6        |  |

# Allgemeine Beschreibungen

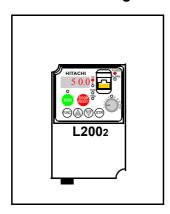
Folgende Tabelle kann auf alle Umrichter L200 angewendet werden.

| Begriff                            |            | riff                  | Allgemeine Beschreibungen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|------------------------------------|------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Schutzart *1                       |            |                       | IP20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Arbeitsverfahren                   |            |                       | sinusförmige Puls-Weiten-Modulation (PWM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Taktfrequ                          | uenz       |                       | 2kHz 14kHz (Grundeinstellung: 5kHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Ausgang                            | gsfreque   | nz *4                 | 0,5 400 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Frequenzgenauigkeit                |            | gkeit                 | Digitale Sollwertvorgabe: 0,01% der maximalen Frequenz Analoge Sollwertvorgabe: 0,1% der maximalen Frequenz (Temperaturbereich 25 °C ± 10 °C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Frequen                            | zauflösu   | ng                    | Maximalfrequenz/1000 bei analoger Sollwertvorgabe, 0,1 Hz bei digitaler Sollwertvorgabe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Spannur<br>Kennlini                |            | quenz-                | verschiedene U/f-Kennlinien: U/f-Steuerung (quadratisch, konstant)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| Zulässig                           | er Übers   | strom                 | 150% des Nennstroms für 1 Minute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Hoch-/R                            | unterlau   | fzeit                 | 2 Zeitrampen einstellbar zwischen 0,01-3000s, linear, S-Kurve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Ein-                               | Freq       | Bedieneinheit         | Einstellung mit UP-/DOWN-Tasten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| gänge                              | Einst.     | Potentiometer         | Analoge Einstellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                    |            | Externe<br>Signale *9 | 0 10 VDC (Eingangsimpedanz 10 kOhm), 4 20 mA (Eingangsimpedanz 250 Ohm), Potentiometer (1k - 2 kOhm, 2W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                    | FWD/       | Bedieneinheit         | RUN-/STOP-Tasten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                    | REV<br>Run | Externe<br>Signale    | Rechtslauf-RUN/STOP, Linkslauf-RUN/STOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Digitale Eingänge                  |            | Eingänge              | 5 digitale Eingänge, frei programmierbar: FW (Rechtslauf), RV (Linkslauf), CF1 - CF4 (Festfrequenzen), JG (Tipp-Betrieb), DB (DC-Bremse), SET (2. Parametersatz), 2CH (2. Zeitrampe), FRS (Reglersperre), EXT (ext. Störung), USP (Wiederanlaufsperre), SFT (Parametersicherung), AT (Analoger Stromeingang), RS (Reset), TH (PTC-Eingang), STA (3-Draht-Start), STP (3-Draht-Stop), F/R (3-Draht-Richtung), PID (PID Ein/Aus), PIDC (PID I-Anteil), UP (Motorpoti Auf), DWN (Motorpoti Ab), UDC (Motorpoti Reset), OPE (Handsollwert), ADD (Frequenzaddition), F-TM (Einfluss Terminalmodus), RDY (Quick-Start), SP-SET (2. Parametersatz im Betrieb) |  |  |  |
| Aus-<br>gänge                      |            |                       | 2 digitale Ausgänge, frei programmierbar:<br>RUN (Betrieb), FA1 (Sollwert erreicht),<br>FA2 (Frequenz > C042/C043), OL (Strom > C041),<br>OD (PID Abweichung), AL (Störung), Dc (Überwachung<br>Analogeingang), FBV (2-stufiger PID Ausgang),<br>NDc (Netzwerküberwachung), LOG (Logische Verknüpfung),<br>OPDc (Kommunikation abgebrochen)                                                                                                                                                                                                                                                                                                            |  |  |  |
| Analog-Ausgang (Monitorfunktionen) |            |                       | PWM-Ausgang; wählbar zur Anzeige der Ausgangsfrequenz analog/digital oder des Ausgangsstroms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Relais-Alarmausgang                |            | gang                  | Programmierbarer Wechslerkontakt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |

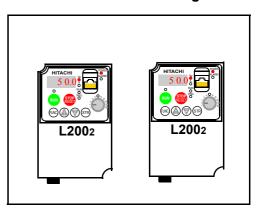
| Begriff            |                          | Allgemeine Beschreibungen                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|--------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Weitere Funktionen |                          | AVR-Funktion, Programmierbare Hoch-/Runterlauframpen, Frequenzbegrenzungen, 16 Festfrequenzen, Feineinstellung Startfrequenz, Temperaturabhängige Reduzierung der Taktfrequenz *10, Frequenzsprung, Tipp-Betrieb, Einstellung elektronischer Motorschutz, Unterdrückung von Überstromab schaltung, Logische Verknüpfungen, Ein-/Ausschaltverzögerung der Ausgänge, Wiederanlauffunktion, Fehlerspeicher, 2. Parametersatz |  |  |
| Schutzfu           | unktionen                | Überstrom, Überspannung, Unterspannung, Überlast,<br>Übertemperatur, CPU-Fehler, Speicherfehler, Erdschlussüber-<br>wachung (nur bei Netz-Ein), Interne Kommunikationsfehler,<br>Elektronischer Motorschutz                                                                                                                                                                                                               |  |  |
| Um-<br>geb         | Umgebungs-<br>temperatur | Betrieb (Umgebung): -10 40°C *10 / Lagerung: -25 60°C *11                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| bedin-<br>gungen   | Luftfeuchtigkeit         | 20 90% Relative Luftfeuchtigkeit (keine Kondensation)                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 3- 3-              | Erschütterung *12        | 5,9 m/s <sup>2</sup> (0,6G), 10 55 Hz                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                    | Aufstellhöhe             | max. 1000 m über NN, innen (keine aggressiven Gase oder Staub)                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Gehäuse            | efarbe                   | Blau                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Optionen           |                          | Digitale Fernbedienung/Kopiereinheit, Bremschopper,<br>Bremswiderstand, Netzdrossel, Motordrossel,<br>Funkentstörfilter, DIN-Hutschienenmontage                                                                                                                                                                                                                                                                           |  |  |

# Signalpegel

Detaillierte Pegel sind im Kapitel "Beschreibung der Steuersignale" auf Seite 4–6.


| Signal                      | Pegel                                                                                                                                         |  |  |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Interne Spannungsversorgung | 24 VDC, 30 mA maximal                                                                                                                         |  |  |
| Signal Digital-Eingänge     | 27 VDC maximal                                                                                                                                |  |  |
| Signal Digital-Ausgänge     | 50 mA max. Dauergrenzstrom, 27 VDC max. Sperrspannung                                                                                         |  |  |
| Analogausgang               | 0 10 VDC, 1 mA                                                                                                                                |  |  |
| Analogeingang, Strom        | 4 19,6 mA, 20 mA nominal                                                                                                                      |  |  |
| Analogeingang, Spannung     | 0 9,6 VDC, 10 VDC nominal, Eingangsimpedanz 10 kOhm                                                                                           |  |  |
| +10V Referenzspannung       | 10 VDC nominal, 10 mA maximal                                                                                                                 |  |  |
| Störmelderelais (Kontakt)   | 250 VAC, max. 2,5 A (ohmsch), 0,2 A max. (induktiv) 100 VAC, 10 mA min. 30 VDC, 3,0 A (ohmsch) max., 0,7A (kapazitiv) max. 5 VDC, 100 mA min. |  |  |

### Leistungsverlauf in Abhängigkeit der Taktfrequenz


Der maximale Ausgangsstrom ist von der Taktfrequenz und der Umgebungstemperatur abhängig. Die Taktfrequenz ist die interne Schaltfrequenz mit der die Leistungsteile geschaltet werden. Sie ist von 2 kHz bis 14 kHz einstellbar. Bei hoher Taktfrequenz sind die Laufgeräusche des Motors sehr leise. Dabei steigt die interne Temperatur des Umrichters und der maximale Ausgangstrom bzw. Ausgangsleistung wird herabgesetzt. Die Umgebungstemperatur ist die Temperatur außerhalb des Umrichtergehäuses, z. B. die Temperatur im Schaltschrank. Eine hohe Umgebungstemperatur verringert ebenfalls den maximalen Ausgangsstrom bzw. Ausgangsleistung.

Umrichter können, wie unten dargestellt, als Einzelgeräte oder mehrere Geräte nebeneinander montiert werden. Nebeneinander montierte Geräte haben höhere Leistungsverluste wie einzeln montierte Geräte. Dies ist auf die verminderte Be- bzw. Entlüftung zurückzuführen. Diagramme für jede Einbauart sind in diesem Kapitel dargestellt. Beachten Sie auch den Mindestmontageabstand der Geräte zueinander in Kapitel "Ensure Adequate Ventilation" on page 2–11

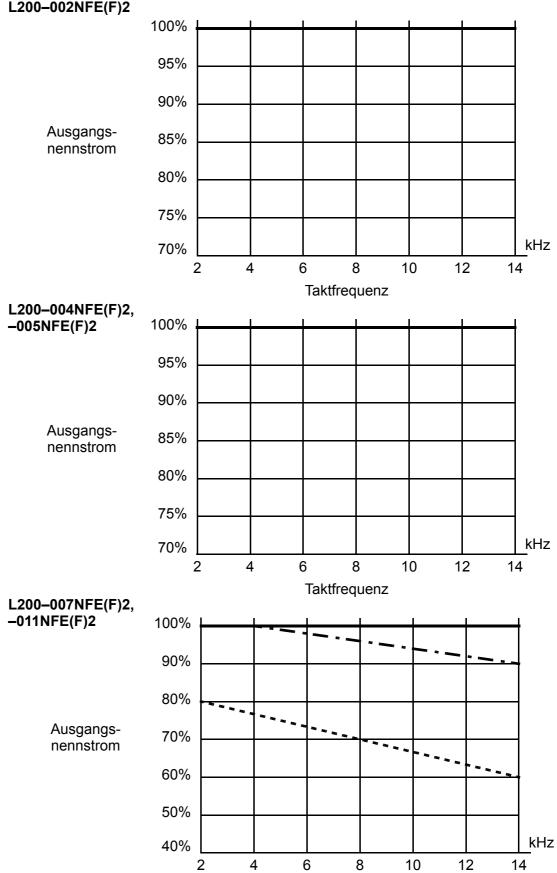
#### Einzelmontage



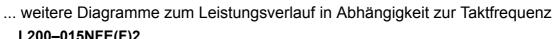
#### Nebeneinandermontage



Benutzen Sie die folgenden Diagramme zur optimalen Einstellung der Taktfrequenz in Bezug auf den Leistungsverlauf des Ausgangsstrom. Vergewissern Sie sich, das das richtige Diagramm für den entsprechenden Umrichter der Serie L200 verwendet wurde.


#### Legende Diagramme:

Umgebungstemperatur 40°C max., Einzelmontage


Umgebungstemperatur 50°C max., Einzelmontage

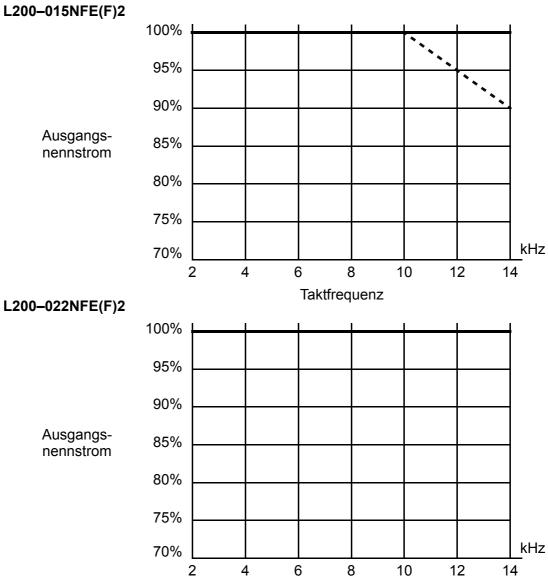
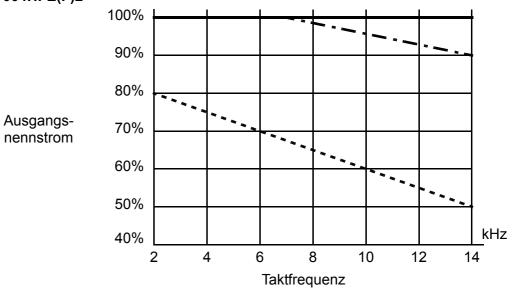
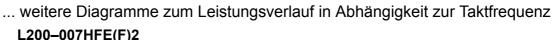
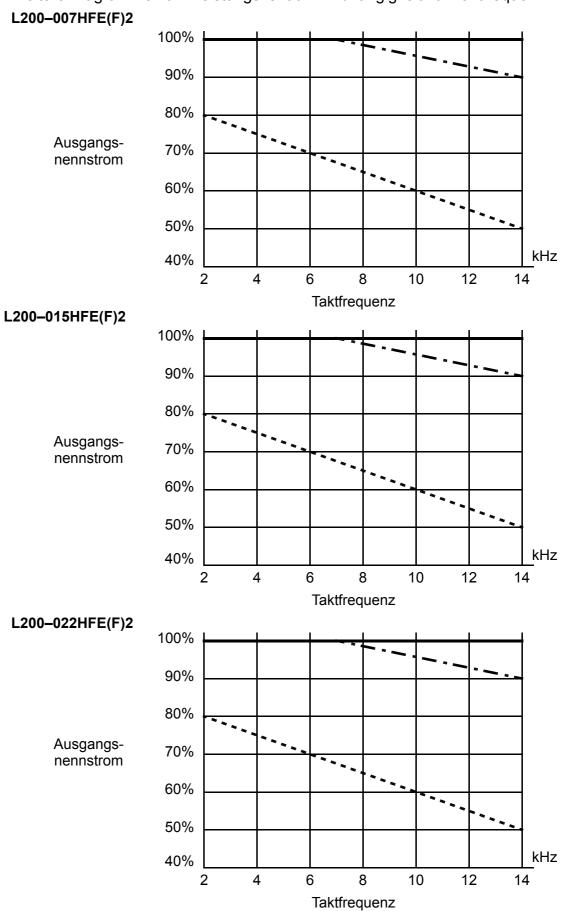

Umgebungstemperatur 40°C max., Sammelmontage

Diagramme zum Leistungsverlauf in Abhängigkeit zur Taktfrequenz: L200–002NFE(F)2




Taktfrequenz




Taktfrequenz

... weitere Diagramme zum Leistungsverlauf in Abhängigkeit zur Taktfrequenz L200–004HFE(F)2







kHz

14

... weitere Diagramme zum Leistungsverlauf in Abhängigkeit zur Taktfrequenz L200-030HFE(F)2, -040HFE(F) 100% 90% 80% Ausgangs-70% nennstrom 60% 50% kHz 40% 2 4 6 8 10 12 14 Taktfrequenz L200-055HFE(F)2 100% 90% 80% Ausgangs-70% nennstrom 60% 50% kHz 40% 14 2 4 6 8 10 12 Taktfrequenz L200-075HFE(F)2 100% 90% 80% Ausgangs-70% nennstrom 60% 50%

6

8

Taktfrequenz

10

12

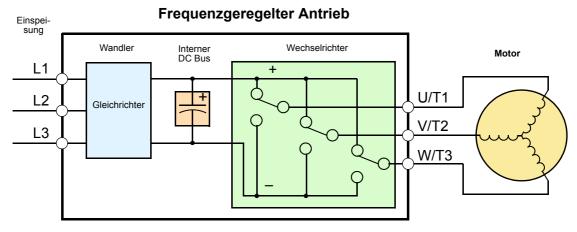
4

40%

2

# Grundlagen frequenzgeregelter Antriebe

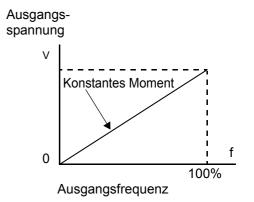
## Einsatzgebiet von drehzahlgeregelten Motoren in der Industrie


Hitachi Umrichter bieten Drehzahlregelungen für dreiphasige Drehstrommotoren an. Der Umrichter wird mit einphasiger oder dreiphasiger Spannung versorgt und an einen Motor angeschlossen. Für viele Anwendungen ist eine Drehzahlregelung aus verschiedenen Gründen vorteilhaft:

- Energieeinsparung Klima- und Lüftungsbereich
- Geschwindigkeitsabstimmung bei ineinandergreifenden Prozessen Textil- und Papierindustrie
- Beschleunigungen und Verzögerungen (Drehmoment)
- Empfindliche Lasten Hebewerkzeuge/Aufzüge, Nahrungsmittelindustrie, Pharmazeutika

#### Was ist ein Umrichter?

Die Bezeichnung *Umrichter* und *frequenzgeregelter Antrieb* sind artverwandt und stehen in unmittelbarem Zusammenhang. Die Geschwindigkeit eines elektronischen Antriebs für einen Drehstrommotor kann durch *Veränderung der Frequenz* geregelt werden.


Ein Umrichter ist ein Gerät, das Gleichspannung in Wechselspannung umwandelt. Die Zeichnung zeigt schematisch den Aufbau eines frequenzgeregelten Antriebs. Zuerst wird die Netzspannung, durch einen Gleichrichter, von Wechselspannung in Gleichspannung umgewandelt. Diese Spannung ist die Zwischenkreisspannung. Danach wird diese Spannung intern wieder in eine Art Wechselspannung umgewandelt. Dies geschieht durch einen speziellen Wechselrichter, der die Ausgangsfrequenz und Ausgangsspannung entsprechend der benötigten Motorgeschwindigkeit anpasst.



Die vereinfachte Darstellung des Umrichters zeigt drei Umschalter. Bei Hitachi Umrichtern sind diese Umschalter eigentlich IGBT's (Insulated **G**ate **B**ipolar **T**ransistors). Unter Verwendung des Kommutierungs-Algorithmus schaltet der Prozessor die IGBT's mit einer hohen Geschwindigkeit, so dass die entsprechende Kurvenform entsteht. Die Induktivität der Motorwicklungen wirkt dabei unterstützend.

### Drehmoment und konstante U/f-Kennlinie

In der Vergangenheit benutzten Drehstrommotoren zur Drehzahlregelung einen offenen Regelkreis. Die konstante U/f-Kennlinie enthielt einen konstanten Anteil zwischen der verwendeten Spannung und Frequenz. Drehstrom-Asynchronmotoren geben bei diesen Bedingungen ein konstantes Drehmoment in einem bestimmten Geschwindigkeitsbereich ab. Für viele Applikationen war diese Technik ausreichend.



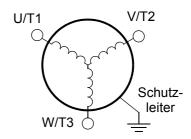
Heute, bei Einführung von hochentwickelten Micro-Prozessoren und digitalen Signal-

Prozessoren (DSP's), besteht die Möglichkeit der Regelung von Geschwindigkeiten und Drehmomenten mit sehr hohen Genauigkeiten. Geräte der Serie L200 sind in der Lage komplexe mathematische Berechnungen durchzuführen. Es kann zwischen verschiedenen Drehmomentenkennlinien, zur Anpassung der benötigten Anwendung, ausgewählt werden. Bei konstanter Kennlinie entwickelt sich das Drehmoment über den gesamten Bereich konstant, entsprechend der Ausgangsspannung bzw. Ausgangsfrequenz. Variables Drehmoment, auch als quadratisches Drehmoment bezeichnet, entwickelt im mittleren Frequenzbereich ein niedriges Drehmoment. Eine Drehmomentenanhebung (Boost) addiert zusätzlich Drehmoment, bei konstanter und quadratischer Kennlinie, in der unteren Hälfte des Frequenzbereichs. Mit der Möglichkeit der frei einstellbaren Kennlinie kann eine Kurve, entsprechend der Kundenanwendung, gebildet werden.

## Eingangsspannungsbereiche

Hitachi Umrichter der Serie L200 enthalten zwei Gruppen: Umrichter der Baureihe 200V und 400V. Die Beschreibung der Antriebe in diesem Handbuch sind für USA und Europa geeignet, trotzdem ist der Eingangsspannungsbereich länderspezifisch. Umrichter der Baureihe 200V benötigen eine Eingangsspannung im Bereich 200 bis 240 V, Umrichter der Baureihe 400V benötigen eine Eingangsspannung im Bereich 380 bis 480 V. Einige Umrichter der Baureihe 200V können mit einer einphasigen oder dreiphasigen Eingangsspannung betrieben werden. Umrichter der Baureihe 400V benötigen in jedem Fall eine dreiphasige Eingangsspannung.




**TIPP:** Bei einer Anwendung mit einphasiger Eingangsspannung können Umrichter nur bis zu einer Leistungsgröße von 2,2 kw verwendet werden.

Die Bezeichnungen für einphasige Eingangsspannungen sind Phase (L) und Null-Leiter (N). Dreiphasige Eingangsspannungen werden mit Phase 1 (R/L1), Phase 2 (S/L2) und Phase 3 (T/L3) bezeichnet. In jedem Fall wird eine Schutzleiterverbindung, die am Umrichter- und Motorgehäuse angeschlossen wird, benötigt. (Siehe auch Kapitel "Anschluss des Motors an den Umrichter" auf Seite 2–23)

## **Umrichterausgang zum Motor**

Der Drehstrommotor muss an den Ausgangsklemmen des Umrichters angeschlossen werden. Die Ausgangsklemmen sind eindeutig mit U/T1, V/T2 und W/T3 bezeichnet (um sie von den Eingangsklemmen zu unterscheiden). Sie entsprechen der Bezeichnung der Motorwicklungen T1, T2 und T3. Die Phasenfolge muss dabei nicht unbedingt eingehalten werden. Die Folge einer falschen Phasenfolge wäre eine falsche Drehrichtung des Motors. Bevor mit Maximalgeschwindigkeit gefahren wird, muss sichergestellt sein, dass weder Personen- noch Maschinenschaden entstehen

Drehstrommotor



kann. Zum Personenschutz muss das Motor- und Umrichtergehäuse mit dem Schutzleiter verbunden werden.

Beachten Sie, dass es bei den drei Motoranschlüssen keinen "Null-Leiter" gibt. Der Motor ist im "Stern" verdrahtet und benötigt keinen "Null-Leiter".

Hitachi Umrichter sind mechanisch stabile und betriebssichere Geräte. Die Aufgabe des Umrichters ist, die Antriebsleistung des Motors bei normalem Betrieb zu kontrollieren. Folglich werden Sie in diesem Handbuch darauf hingewiesen, die Spannungsversorgung des Umrichters, während der Motor läuft, nicht auszuschalten (außer bei NOT-AUS). Motorschütze können verwendet werden, dürfen jedoch nur im Stillstand geschaltet werden. Natürlich müssen sicherheitsrelevante Bauteile, wie Sicherungen, im Aufbau vorhanden sein, um bei Fehlfunktionen die Spannung wegschalten zu können.

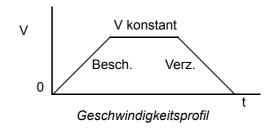
## **Intelligente Funktionen und Parameter**

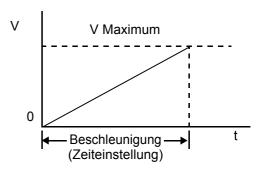
In diesem Handbuch werden die Anwendungen von Umrichterfunktionen und -parametrierungen beschrieben. Der Umrichter ist mikroprozessorgesteuert und besitzt viele frei programmierbare Funktionen. Der Mikroprozessor hat ein "onboard" EEPROM zur Parameterspeicherung. Mit der Tastatur hat man Zugriff auf alle Funktionen und Parameter. Die Geräte dafür werden als digitale Bedieneinheit oder digitales Bedienfeld bezeichnet. In Kapitel 2 wird gezeigt wie ein Motor in Betrieb genommen wird, Verwendung von Steuerbefehlen oder Parameterkonfiguration.

Mit der optionalen Lese/Schreib-Einheit lassen sich Umrichterdaten aus dem EEPROM lesen oder in das EEPROM übertragen. Diese Funktion ist nützlich, um einen bestimmten Parametersatz in verschiedene Umrichter zu übertragen.



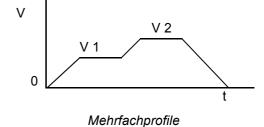
#### **Bremsen**


Bremsen wird als eine Kraft bezeichnet, die das Bestreben hat den Motor langsamer drehen zu lassen oder ihn zum Stillstand zu bringen. Sie wird der Motorverzögerung zugeordnet und wird dann wirksam, wenn die Last den Motor schneller laufen lassen möchte als die gewünschte Geschwindigkeit. Wenn der Motor schneller abgebremst werden muss als beim normalen Auslauf, wird der Einsatz einer optionalen Bremseinheit empfohlen. Der Umrichter L200 speist einen Bremswiderstand mit der überschüssigen Motorenergie und lässt den Motor abbremsen (siehe "Einleitung" auf Seite 5–2 und "Generatorisches Bremsen" auf Seite 5–4 für weitere Informationen über die Bremseinheiten). Für ständige Überlastungen, die sich über einen längeren Zeitraum erstrecken, ist der Umrichter L200 nicht geeignet (in diesem Fall wenden Sie sich an Ihre Hitachi Vertretung).


Die Umrichterparameter beinhalten auch Beschleunigung und Verzögerung, welche auf die entsprechende Anwendung angepasst werden können. Bei bestimmten Umrichtern, Motoren und Lasten gibt es für Beschleunigung und Verzögerung nur einen bestimmten ausführbaren Bereich.

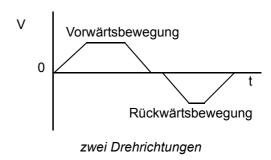
## Geschwindigkeitsprofile

Der Umrichter L200 ist für anspruchsvolle Geschwindigkeitssteuerungen geeignet. Die graphische Darstellung zeigt das Leistungsvermögen und die Einstellung der entsprechenden Parameter. Hier wird ein Geschwindigkeitsprofil gezeigt, welches häufig in der Industrie angewendet wird. Die Beschleunigung wird für die Geschwindigkeitsaufnahme, und die Verzögerung für die Geschwindigkeitsabnahme, benötigt.


Beschleunigungs- und Verzögerungseinstellungen legen die erforderliche Zeit fest, die vom Stopp bis zur maximalen Frequenz (oder umgekehrt) benötigt werden soll. Die Steigung der Kennlinie entspricht der Beschleunigung bzw. Verzögerung (Geschwindigkeitsänderung/Zeit). Ein Anstieg der Ausgangsfrequenz entspricht der "Beschleunigungssteigung", während ein Abfall der Ausgangsfrequenz der "Verzöge-






rungssteigung" entspricht. Die Beschleunigungs- bzw. Verzögerungszeit einer Geschwindigkeitsänderung ist abhängig von der Start- bzw. Endfrequenz. Bei einer Beschleunigungszeit von 10 s, ist dies die Zeit die der Antrieb benötigt, um z. B. von 0 auf 50 Hz hochzulaufen.

Der Umrichter L200 kann bis zu 16 Festfrequenzen speichern. Jede Festfrequenz hat, bezogen auf den Endwert, anteilsmäßig ihre eigene Beschleunigungs- bzw. Verzögerungszeit. Ein Mehrfachprofil mit zwei Geschwindigkeiten (Darstellung rechts) kann mittels digitaler Eingänge angesprochen werden. Die Ansteuerung der Festfrequenzen erfolgt extern. Die gewünschte Geschwindigkeit ist



über den gesamten Geschwindigkeitsbereich stufenlos einstellbar. Dafür kann das eingebaute Potentiometer verwendet werden oder die Ansteuerung erfolgt über analoge Signale von 0-10V oder 4-20mA.

Der Umrichter ist für den Betrieb beider Drehrichtungen ausgelegt. Mit den Befehlen FW und RV wird die Drehrichtung ausgewählt. Der Kurvenverlauf rechts stellt eine Vorwärtsbewegung, gefolgt von einer Rückwärtsbewegung mit einer kürzeren Verzögerung, dar. Die Geschwindigkeitseinstellungen bzw. analogen Signale steuern die Geschwindigkeit, während die Befehle FWD und RV die Drehrichtung festlegen.



**HINWEIS:** Der L200 kann Lasten in beide Drehrichtungen bewegen. Er ist nicht dafür ausgelegt, wie bei einer Servo-Anwendung, durch Drehen der Signaleingangsspannung die Drehrichtung festzulegen.

# Häufig gestellte Fragen

- **F.** Welcher Vorteil besteht darin, im Vergleich zu alternativen Lösungen, einen Motor mit einem Umrichter anzutreiben?
  - **A.** Ein Umrichter kann Motorgeschwindigkeiten mit einem hohen Wirkungsgrad verändern, im Gegensatz zu mechanischen oder hydraulischen Geschwindigkeitssteuerungen. Die Energieeinsparungen bei Einsatz eines Umrichters zahlen sich in relativ kurzer Zeit aus.
- **F.** Die Bezeichnung "Umrichter" ist ein wenig verwirrend, seit die Begriffe "Antrieb" und "Verstärker" zur Beschreibung von elektronischen Einheiten zur Motorsteuerung verwendet werden. Was ist mit der Bezeichnung "Umrichter" gemeint?
  - A. Die Bezeichnung *Umrichter, Antrieb* und *Verstärker* sind in der Industrie größtenteils austauschbar. Heutzutage werden die Bezeichnungen *Antrieb, frequenzgeregelter Antrieb, geschwindigkeitsgeregelter Antrieb* und *Umrichter* generell zur Beschreibung von elektronischen, mikroprozessorbasierenden Geschwindigkeitssteuerungen benutzt. *Verstärker* ist eine Bezeichnung die fast ausschließlich im Bereich der Servo- oder Schrittmotoren zur Anwendung kommt.
- **F.** Obwohl der Umrichter L200 für variable Geschwindigkeitsregelungen vorgesehen ist, kann er trotzdem für Anwendungen mit konstanter Drehzahl eingesetzt werden?
  - A. Ja, manchmal wird ein Umrichter einfach als "Sanftanlaufgerät" verwendet, nur um verschiedene Beschleunigungen und Verzögerungen bis zu einer konstanten Drehzahl nutzen zu können. Weitere Funktionen des L200 sind auch für derartige Anwendungen nützlich. Bei Verwendung einer variablen Geschwindigkeitsregelung können verschiedene Applikationen in der Industrie davon profitieren, wie geregelte Beschleunigung bzw. Verzögerung, hohes Drehmoment bei kleinen Geschwindigkeiten und Energieeinsparung gegenüber anderen Lösungen.
- **F.** Kann ein Umrichter und ein Drehstrommotor zum Positionieren verwendet werden?
  - A. Dies ist von der benötigten Genauigkeit, der langsamsten Geschwindigkeit und des abgegebenen Drehmomentes abhängig. Der Umrichter L200 wird bereits bei einer Frequenz von 0,5Hz (15U/min) sein volles Drehmoment an den Motor abgeben. Verwenden Sie KEINEN Umrichter, um eine Last ohne Hilfe einer mechanischen Bremse zu halten (Verwenden Sie hier ein Servooder Schrittmotoren-System).
- F. Kann der Umrichter über ein Netzwerk gesteuert und überwacht werden?
  - **A.** Ja. der Umrichter L200 hat eine eingebaute ModBus Schnittstelle. Für weitere Informationen zur Netzwerkkommunikation siehe Anhang B.
- **F.** Warum wird im Produkthandbuch die Bezeichnung "200V Baureihe" anstatt der Spannungsbezeichnung "230VAC" verwendet?
  - A. Umrichter sind werksseitig für einen bestimmten Spannungsbereich des jeweiligen Landes vorgesehen. Die Bezeichnung der entsprechenden Baureihe steht auf dem Typenschild an der rechten Seite. Ein Umrichter für den europäischen Markt der Modellreihe 200V hat andere Parametereinstellungen als ein Umrichter für den amerikanischen Markt der Modellreihe 200V. Mit den Werkseinstellungen kann die Einstellung für den europäischen, wie auch für den amerikanischen Markt vorgenommen werden (Kapitel "Wiederherstellen der Werkseinstellungen" auf Seite 6–9).

- F. Warum hat der Motor keinen Null-Leiter zur Rückführung in den Umrichter?
  - **A.** Der Motor stellt eine "symmetrische Stern-Belastung" dar, wenn die Belastung in allen drei Windungen gleich ist.
- **F.** Braucht das Motorgehäuse eine Schutzleiterverbindung?
  - **A.** Ja, aus mehreren Gründen. Der wichtigste Grund ist der Schutz vor Berührung bei Auftreten einer gefährlichen Spannung am Gehäuse. Weiterhin weist der Motor, mit zunehmendem Alter, einen höheren Ableitstrom auf. Schließlich leitet ein geerdetes Gehäuse Störimpulse besser ab als ein nicht geerdetes.
- **F.** Welche Motor-Typen sind für Hitachi Umrichter passend?
  - A. Motor-Type Es muss ein dreiphasiger Drehstrommotor sein. Motorgröße – In der Praxis ist es besser den richtigen Motor für die entsprechende Applikation zu finden. Anschließend sollte der Umrichter darauf angepasst werden.



**HINWEIS:** Andere Faktoren, wie Wärmeableitung, Motorkennlinie, Gehäuse und Kühlung, beeinflussen auch noch die Motorenauswahl.

- F. Wieviele Pole sollte der Motor haben?
  - **A.** Hitachi Umrichter können mit 2, 4, 6 oder 8 Pole konfiguriert werden. Je größer die Polzahl ist, um so kleiner ist die Motornenndrehzahl.
- **F.** Besteht nachträglich die Möglichkeit eine Bremseinheit an den Antrieb L200 anzuschließen?
  - **A.** Ja. Der Umrichter L200 hat die Möglichkeit des Anschlusses einer externen Bremseinheit. Für weitere Informationen wenden Sie sich an Ihre Hitachi Vertretung.
- **F.** Wie kann herausgefunden werden, ob die Anwendung einen Bremswiderstand benötigt?
  - A. Bei neuen Anwendungen ist es schwierig darüber zu entscheiden, bevor der Motor/Antrieb nicht getestet worden ist. Im Allgemeinen verlassen sich einige Anwendungen darauf, durch Reibungsverlust die nötige Bremsenergie aufzubringen. Andernfalls wird dies auch durch lange Verzögerungszeiten akzeptiert. Diese Anwendungen benötigen keine dynamische Bremsenergie. Anwendungen aus einer Kombination mit hohem Massenträgheitsmoment und kurzen Verzögerungszeiten benötigen dynamische Bremsenergie. Diese Frage kann nur durch Erfahrung oder umfangreiche Berechnungen beantwortet werden.
- **F.** Verschiedene Optionen, wie z. B. Störsignalunterdrückung, sind für Hitachi Umrichter verfügbar. Wie kann herausgefunden werden, ob Anwendungen diese Optionen benötigen?
  - A. Der Zweck dieser Entstörfilter ist die Reduzierung der Störsignale, damit die Bedienung benachbarter elektrischer Geräte nicht beeinträchtigt wird. Einige Anwendungen werden behördlich überwacht. Die Störsignalunterdrückung gehört dazu und ist vorgeschrieben. In solchen Fällen muss der Umrichter einen entsprechenden Entstörfilter besitzen. Andere Anwendungen benötigen keine Störsignalunterdrückung, es sei denn, man stellt fest das es eine elektrische Beeinflussung in der Bedienung zu anderen Geräten gibt.

- **F.** Der Umrichter L200 besitzt einen PID-Regler. PID-Regler werden gewöhnlich in der Verfahrens- oder Klimatechnik verwendet. Wie kann der PID-Regler nützlich für eine entsprechende Anwendung sein?
  - A. Zur Bestimmung der Motorbeeinflussung muss in der Anwendung die Hauptvariable festgelegt werden. Dies ist dann der Istwert (IW) für den Motor. Eine schnelle Motorgeschwindigkeit wird eine schnellere Änderung des IW zur Folge haben als bei einer langsameren Motorgeschwindigkeit. Bei Verwendung des PID-Reglers steuert der Umrichter den Motor mit der optimalen Geschwindigkeit, damit der IW den gewünschten Wert halten kann. PID-Regler benötigen zusätzliche Sensoren und Verdrahtungen.

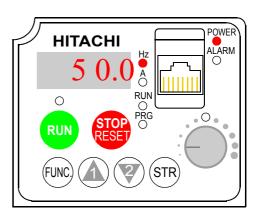
# Umrichteraufbau und Installation

| In diesem Kapitel                      | Seite |
|----------------------------------------|-------|
| — Übersicht der Umrichtereigenschaften | 2     |
| Aufbau eines Antriebssystem            | 7     |
| — Schrittweise Installation            | 8     |
| — Einschalttest                        | 25    |
| — Bedienfeld                           | 27    |

# Übersicht der Umrichtereigenschaften

## Prüfen des Lieferumfangs

Kontrollieren Sie nach dem Auspacken des neuen Gerätes folgende Sachen:

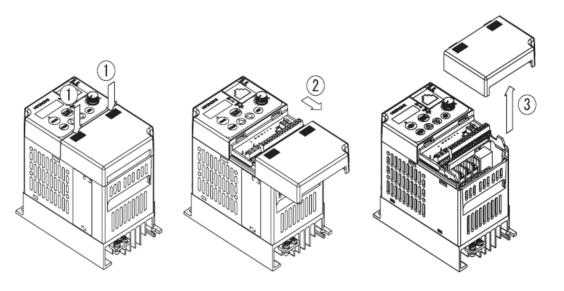

- 1. Kontrollieren Sie Schäden die auf einen eventuellen Transport zurückzuführen sind.
- 2. Prüfen Sie den Inhalt des Kartons auf Vollständigkeit:
  - a. ein Umrichter L200
  - **b.** ein Produkthandbuch (auf CD)
  - c. eine Schnellübersicht L200
- **3.** Prüfen Sie anhand des Typenschilds an der Seite des Umrichters, ob das Gerät Ihrer Bestellung entspricht.

#### Geräteaufbau

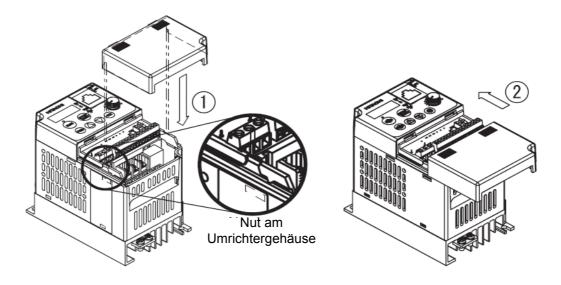
Die Größe des Umrichters L200 variiert nach Ausgangsstrom und Motorgröße. Alle Geräte haben zur Vereinfachung die gleiche Bedienung und Anschlussbezeichnung. Sie besitzen weiterhin einen Kühlkörper auf der Rückseite des Gehäuses. Die größeren Geräte haben, zur besseren Kühlung, zusätzlich noch einen Lüfter. Die Montagelöcher sind im Kühlkörper vorgebohrt. Kleinere Geräte haben zwei Montagelöcher, größere Geräte haben vier. Alle Montagelöcher sollten auch verwendet werden.

Zwei Schutzleiteranschlüsse befinden sich an einer Metalllasche am Kühlkörper des Umrichters. Berühren Sie niemals während oder kurz nach Betrieb den Kühlkörper. Er könnte sehr heiß sein. Das Leistungsteil und das Steuerteil mit dem Bedienfeld sind auf dem Kühlkörper aufgebaut.



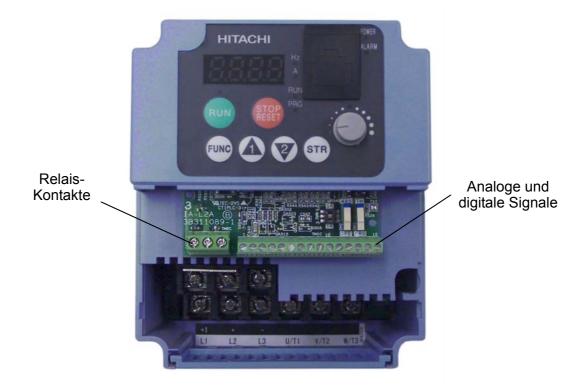



## Vordere Gehäuseabdeckung



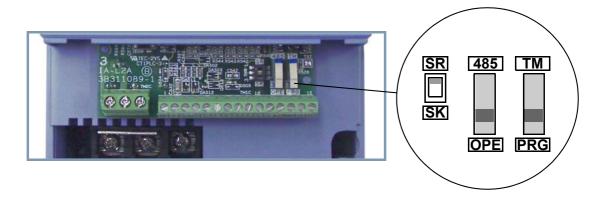

**HOHE SPANNUNGEN:** Gefahr eines Stromschlages. Schalten Sie die Netzspannung ab und warten 10 Min. bis Sie die vordere Abdeckung abnehmen.

**Gehäuseabdeckung entfernen -** Die vordere Gehäuseabdeckung wird von zwei Paar Laschen gehalten. Sie sind von vorne nicht zu sehen, daher ist es ratsam sich *vorher* über den genauen Sitz zu informieren. Die Zeichnung unten zeigt die Vorgehensweise um die Gehäuseabdeckung zu entfernen. Durch leichtes Drücken der markierten Flächen (1) auf der Gehäuseabdeckung, kann diese durch Ziehen nach unten (2) und anschließendem Anheben (3) entfernt werden.




**Gehäuseabdeckung einsetzen -** Die Bilder unten zeigen die Vorgehensweise zum Einsetzen der Gehäuseabdeckung. Die Abdeckung mit den seitlichen Laschen an den ausgearbeiteten Nuten am Umrichtergehäuse einsetzen (1) und sie anschließend bis zum Einrasten nach oben schieben (2).




## Steuerklemmleisten

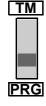
Nach Entfernen der vorderen Gehäuseabdeckung, machen Sie sich mit den Anschlüssen, wie im Bild unten dargestellt, vertraut.



#### **DIP-Schalter**

Der Umrichter hat drei interne DIP-Schalter, die sich, wie unten dargestellt, rechts neben den Steuerklemmleisten befinden. Dieser Abschnitt ist nur eine Einleitung, und bezieht sich auf Kapitel in denen die DIP-Schalter genauer beschrieben werden.




SR

Der DIP-Schalter SR/SK (Source/Sink) stellt die digitalen Eingänge für eine positive oder negative Logik (PNP-/NPN-Logik) ein. Die Vorgehensweise zur Installation und des Systemtests, die in diesem Kapitel beschrieben wurde, benötigt keine Verdrahtung der Eingangsklemmen. Die SR/SK-Schaltereinstellung wird genauer im Kapitel "Verwendung Eingangsklemmen" auf Seite 4–9 beschrieben.



Der DIP-Schalter 485/OPE (RS-485/OPE-Bedienung) stellt die serielle Umrichter-Schnittstelle RS-485 ein. Die Umrichter-Tastatur (OPE-SRmini) kann direkt am Umrichter oder über ein Kabel an der seriellen Schnittstelle betrieben werden. Die Verbindung mit einer "intelligenten" Bedieneinheit erfordert auch die passenden Einstellungen. Bei Verwendung von digitalen Bedieneinheiten (wie OPE-SR oder OPE-0EX) muss der Schalter auf "OPE" eingestellt werden. Soll eine Steuerung über ModBus erfolgen, muss er auf "485" eingestellt werde. Mehr Informationen in Kapitel "Verbindung des Umrichters mit dem ModBus" auf Seite B–3.

Der DIP-Schalter TM/PRG (Terminal [Klemmen]/Programmierung) legt die Grundfunktionen fest. Parameter A001 gibt die Einstellung für die Fequenzsollwertvorgabe und Parameter A002 die Einstellung für den Start/Stop-Befehl vor. Dies ermöglicht eine Auswahl der Einstellungen zwischen Eingangsklemmen, Bedientasten und Potentiometer, ModBus etc.



Bei Schalterstellung "PRG" erfolgt die Steuerung entsprechend der Einstellung unter Parameter A001/A002. Bei Schalterstellung "TM" erfolgt die Sollwertvorgabe über die analogen Eingänge bzw. Start/Stop wird über die Klemmen vorgegeben. Mehr Informationen in Kapitel "Vorgabe Steuerungseinstellungen" auf Seite 3–10.



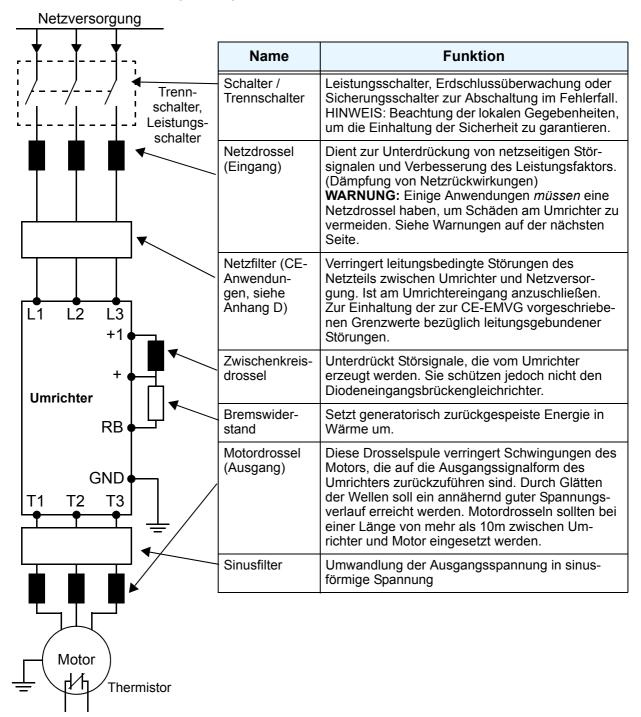
**HINWEIS:** L200<sub>2</sub> Umrichter haben eine integrierte ModBus RTU RS-485 Schnittstelle. Kommunikationen zu anderen Netzwerken wie DeviceNet, Ethernet, CANopen und ProfiBus sind über optionale Schnittstellenkarten möglich. Fragen Sie diesbezüglich bei Ihrer Hitachi Vertretung nach.

Leistungsklemmen - Stellen Sie zuerst sicher, dass keine Spannung am Umrichter anliegt. Wenn Spannung am Umrichter anliegt, schalten Sie diese aus, warten 10 Minuten und beobachten die Power LED. Sie muss aus sein. Nach Abnahme der vorderen Gehäuseabdeckung kann die Kabeldurchführung, wie rechts dargestellt, nach oben herausgeschoben werden.

Betreiben Sie das Gerät niemals ohne Gehäuseabdeckung oder Kabeldurchführung.



Die Einspeisungs- und Motorleitungen werden an der unteren Reihe der Klemmen angeschlossen. Die obere Reihe dient zum Anschluss der optionalen Bremseinheiten.


Die weiteren Abschnitte in diesem Kapitel beschreiben die Darstellung eines Antriebssystems und führt Sie schrittweise durch die Installation. Anschließend wird in diesem Kapitel beschrieben, wie Sie mit den Bedientasten Zugang zu den Funktionen bekommen und Parameter eingestellt werden können.



Einspeisungs- und Motorklemmen

## Aufbau eines Antriebssystem

Ein Antriebssystem enthält einen Motor und einen Umrichter, sowie für die elektrische Betriebssicherheit Trennschalter oder Sicherungen. Dies ist für einen Start im Prüffeld mit Motor und Umrichter ausreichend. Dieses Antriebssystem kann jedoch noch weitere verschiedene Komponenten enthalten. Einige dienen der Funkentstörung, andere steigern die Bremsfunktion des Umrichters. Die Darstellung zeigt alle Komponenten die in der Anwendung benötigt werden.





**HINWEIS:** Beachten Sie, dass einige Komponenten die Zustimmung offizieller Behörden erfordern (Siehe Kapitel 5 und Anhang D).



**WARNUNG:** In den unten beschriebenen Fällen eines Universalumrichters kann eine Stromspitze auf der Netzteilseite manchmal zur Zerstörung des Umrichters führen:

- 1. Der Unsymmetriefaktor des Netzes ist >3%.
- 2. Die Netzleistung ist 10mal größer als die Umrichterleistung (oder die Netzleistung ist 500kVA und größer).

Dort wo diese Bedingungen vorhanden sind oder die angeschlossenen Teile eine hohe Betriebssicherheit erfordern, MUSS eingangsseitig eine Netzdrossel mit mindestens 3% Spannungsabfall bei Nennstrom, unter Berücksichtigung der Spannungsversorgung des Netzteils, verwendet werden. Bei möglichem Blitzeinschlag, sollte eine Blitzschutzeinrichtung (Überspannungsableitung) verwendet werden.

## **Schrittweise Installation**

Dieser Abschnitt führt Sie schrittweise durch die Grundlagen der Installation:

| Schritt | Vorgang                                                                                                        | Seite |
|---------|----------------------------------------------------------------------------------------------------------------|-------|
| 1       | Auswahl eines geeigneten Einbauortes unter Einhaltung der<br>Warnungen und Hinweise. Siehe HINWEIS unten.      | 2–9   |
| 2       | Prüfung des Einbauortes hinsichtlich der geeigneten Lüftung.                                                   | 2–10  |
| 3       | Abdeckung der Lüfteröffnung, um das Eindringen von Fremdkörpern zu vermeiden.                                  | 2–10  |
| 4       | Prüfung der Umrichtermaße zur Anbringung der Montagelöcher.                                                    | 2–12  |
| 5       | Vor Verdrahtung des Umrichters Leitungsquerschnitt, Sicherungsgrößen und festen Sitz aller Schrauben beachten. | 2–19  |
| 6       | Anschluss der Netzversorgung an den Umrichter.                                                                 | 2–21  |
| 7       | Anschluss des Motors an den Umrichter.                                                                         | 2–24  |
| 8       | Entfernen der Lüfterabdeckung aus Schritt 3.                                                                   | 2–25  |
| 9       | Ausführung des Einschalttestes (Dieser Schritt hat mehrere Unterschritte)                                      | 2–25  |
| 10      | Prüfung der Installation.                                                                                      | 2–37  |



**HINWEIS:** Bei Installation in einem europäischen Land, beachten Sie die EMV-Richtlinien im Anhang D.

## **Geeigneter Einbauort**



**Schritt 1:** Überprüfung der folgenden Warnungen in Verbindung mit dem Umrichtereinbau. Zu diesem Zeitpunkt entstehen die meisten Fehler, in Form von kostenintensiver Nacharbeit, Geräte- oder Personenschaden.



**ACHTUNG:** Das Gerät auf einem schwer entflammbaren Material, wie z. B. einer Stahlplatte, installieren. Andernfalls besteht Brandgefahr.



**ACHTUNG:** Keine leicht entflammbaren Materialien neben dem Umrichter anbringen. Andernfalls besteht Brandgefahr.



**ACHTUNG:** Es dürfen keine Fremdkörper, in Form von Kabelschuhen, Metallspäne, Staub etc., durch die Lüfteröffnung gelangen. Andernfalls besteht Brandgefahr.



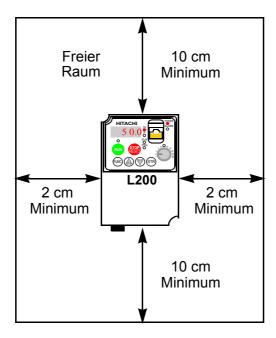
**ACHTUNG:** Die Montage soll so erfolgen, dass sie den Gewichtsanforderungen gemäß Kapitel 1, Tabelle "Technische Daten" standhält. Andernfalls kann der Umrichter herunterfallen und zu Personenschäden führen.

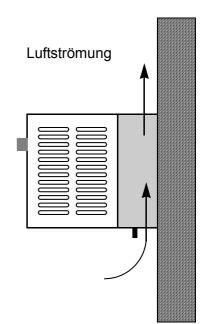


**ACHTUNG:** Die Montage soll an einer senkrechten Wand erfolgen, die keinen Erschütterungen ausgesetzt ist. Andernfalls kann der Umrichter herunterfallen und zu Personenschäden führen.



**ACHTUNG:** Installieren oder verwenden Sie keinen defekten Umrichter oder Umrichter an dem Teile fehlen. Andernfalls kann es zu Personenschäden führen.





**ACHTUNG:** Die Installation soll in einem gut belüfteten Raum erfolgen, in dem weder direkte Sonneneinstrahlung, hohe Temperaturen, hohe Luftfeuchtigkeit, hohe Staubentwicklung, aggressive, explosive und leicht entzündliche Gase oder Schleifflüssigkeiten vorhanden sind. Andernfalls besteht Brandgefahr.

## Geeignete Lüftung

2

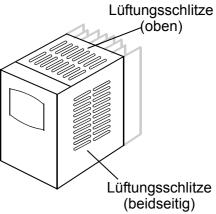
**Schritt 2:** Zusammenfassung der Warnungen - Der Einbauort muss sich in einer zuverlässigen, schwer entflammbaren, sauberen und trockenen Umgebung befinden. Zur Zirkulation und Unterstützung der Kühlung muss genügend Umluft vorhanden sein. Zur Montage der Geräte sollten die Abstandsmaße in der unteren Zeichnung herangezogen werden.







**ACHTUNG:** Einhaltung der vorgegebenen Abstände zum Umrichter, um eine geeignete Lüftung zu gewährleisten. Andernfalls können die Geräte sich erhitzen oder sich entzünden.


## Fremdkörper in den Lüftern

3

**Schritt 3:** Um zu verhindern, dass bei der Installation Fremdkörper, wie Kabelenden und Metallspäne, in das Gerät gelangen, reicht es aus das Gerät vorläufig abzudecken.

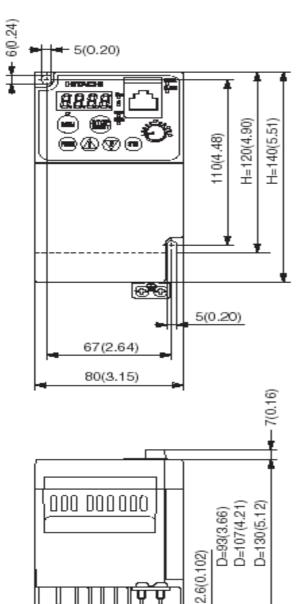
Überprüfung der folgenden Liste während des Geräteeinbaus:

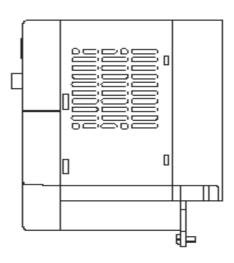
- **1.** Die Umgebungstemperatur muss in einem Bereich zwischen -10 bis 40°C liegen.
- **2.** Halten Sie alle hitzeerzeugenden Geräte so weit wie möglich vom Umrichter fern.
- 3. Bei Einbau des Umrichters in ein Gehäuse, (beid muss die Lüftung so ausgelegt sein, dass bei geschlossenem Gehäuse die Umgebungstemperatur nicht überschritten wird (Verlustleistung der Geräte siehe Tabelle).
- 4. Die vordere Geräteabdeckung niemals während des Betriebs entfernen.



# Verlustleistung

| L200NFE(F)2     | 002 | 004 | 005 | 007 | 011 | 015 | 022 |
|-----------------|-----|-----|-----|-----|-----|-----|-----|
| Auslastung 100% | 19W | 27W | 28W | 34W | 42W | 55W | 98W |
| Auslastung 70%  | 16W | 22W | 23W | 27W | 30W | 39W | 62W |


| L200HFE(F)2     | 004 | 007 | 015 | 022 | 030  | 040  | 055  | 075  |
|-----------------|-----|-----|-----|-----|------|------|------|------|
| Auslastung 100% | 26W | 42W | 70W | 95W | 130W | 150W | 187W | 227W |
| Auslastung 70%  | 20W | 30W | 45W | 65W | 90W  | 95W  | 135W | 165W |


## **Umrichtermaße**

4

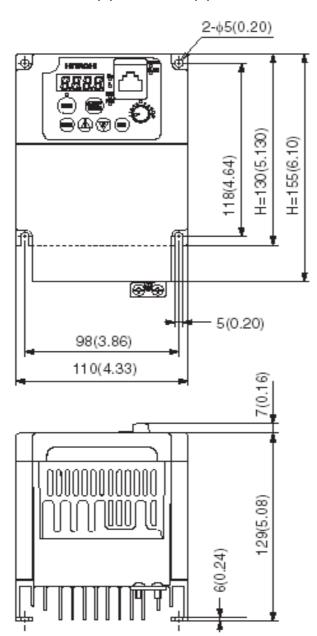
**Schritt 4:** Auswahl der geeigneten Umrichtermaße auf den folgenden Seiten. Maße werden in Millimeter angegeben.

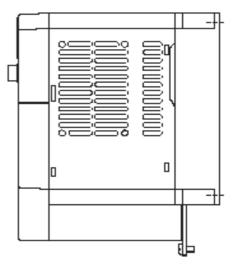
L200-002NFE(F)2, -004NFE(F)2, -005NFE(F)2





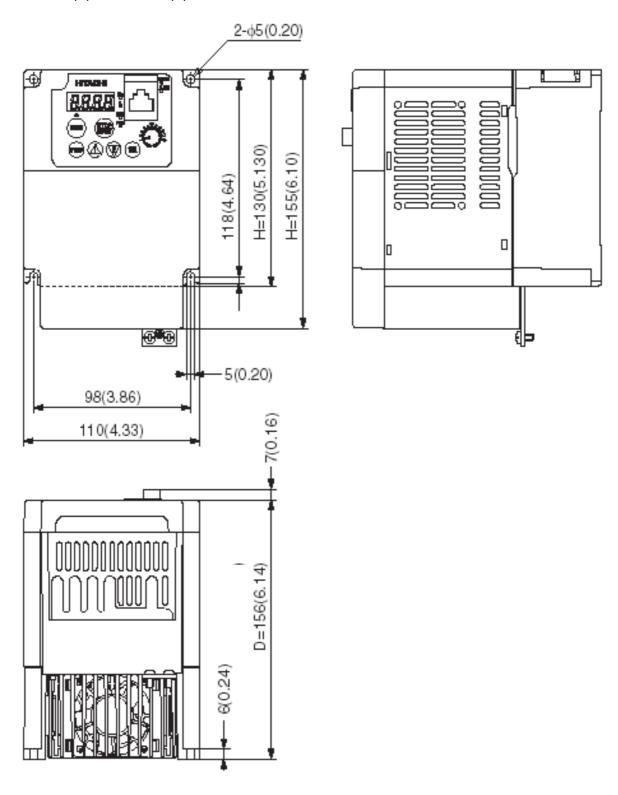
#### Modell


- -002NFE(F)2 D=93
- -004NFE(F)2 D=107
- -005NFE(F)2 D=130



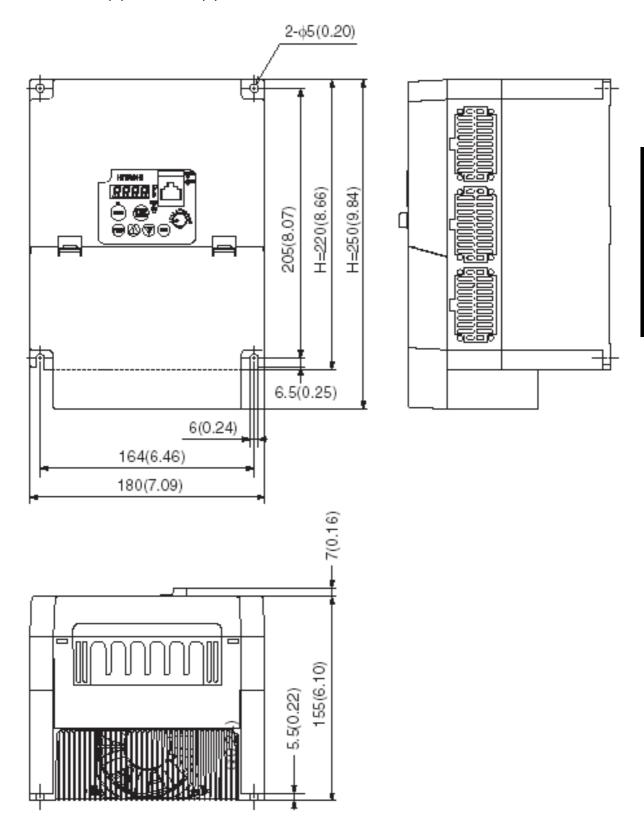

**HINWEIS:** Einige Umrichtergehäuse haben zwei Montageschrauben, andere haben vier. Verwenden Sie Federringe oder andere Hilfsmittel, um den Umrichter vor losrütteln durch Vibrationen zu schützen.

weitere Maßzeichnungen...


L200-007NFE(F)2, -004HFE(F)2






weitere Maßzeichnungen...

L200-011NFE(F)2, -015NFE(F)2, -022NFE(F)2, -007HFE(F)2, -015HFE(F)2, -022HFE(F)2, -030HFE(F)2, -040HFE(F)2



weitere Maßzeichnungen...

L200-055HFE(F)2, -075HFE(F)2



## **Technische Daten EMV-Filter**

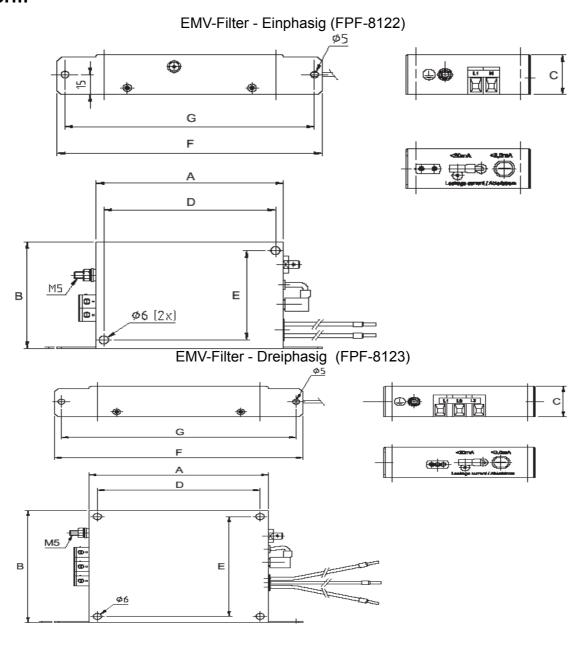
|            |                    | Filte                  | r L200   | Filter L200        |             |                                       |                                                     |  |  |  |  |  |
|------------|--------------------|------------------------|----------|--------------------|-------------|---------------------------------------|-----------------------------------------------------|--|--|--|--|--|
| Bauform    | Nenn-<br>spannung  | Frequenz-<br>umrichter | Leistung | Nenn-<br>strom (A) | Modell      | Ableitstrom<br>[mA/Phase]<br>bei 50Hz | Ableitstrom<br>[mA/Phase]<br>bei 50Hz<br>worst case |  |  |  |  |  |
| Footprint/ | Einphasig<br>240V  | 002NFE2                | 0,2KW    | 3,5 / 3,1          | FPF-8122-07 | 17mA / 2,7 mA                         | 34mA / 5,4mA                                        |  |  |  |  |  |
| Booktype   | 2400               | 004NFE2                | 0,4kW    | 5,8 /5,8           |             |                                       |                                                     |  |  |  |  |  |
|            |                    | 005NFE2                | 0,55kW   | 6,7 /6,7           |             |                                       |                                                     |  |  |  |  |  |
|            |                    | 007NFE2                | 0,75kW   | 9,0 / 9,0          | FPF-8122-12 | 17mA / 2,7mA                          | 34mA / 5,4mA                                        |  |  |  |  |  |
|            |                    | 011NFE2                | 1,1kW    | 11,2 / 11,2        |             |                                       |                                                     |  |  |  |  |  |
|            |                    | 015NFE2                | 1,5KW    | 17,5 / 16          | FPF-8122-24 | 17mA / 2,7mA                          | 34mA / 5,4mA                                        |  |  |  |  |  |
|            |                    | 022NFE2                | 2,2KW    | 22,5 / 24          |             |                                       |                                                     |  |  |  |  |  |
| Footprint/ | Dreiphasig<br>480V | 004HFE2                | 0,4KW    | 2,0 / 2,0          | FPF-8123-07 | 5,7mA / <3,5mA                        | 188mA / 30mA                                        |  |  |  |  |  |
| Booktype   | 40UV               | 007HFE2                | 0,75KW   | 3,3 / 3,3          |             |                                       |                                                     |  |  |  |  |  |
|            |                    | 015HFE2                | 1,5kW    | 5,0 / 5,0          |             |                                       |                                                     |  |  |  |  |  |
|            |                    | 022HFE2                | 2,2KW    | 7,0 / 7,0          |             |                                       |                                                     |  |  |  |  |  |
|            |                    | 030HFE2                | 3,0kW    | 10,0 / 10,0        | FPF-8123-11 | 6,3mA / <3,5mA                        | 198mA / 56mA                                        |  |  |  |  |  |
|            |                    | 040HFE2                | 4,0kW    | 11,0 / 11,0        |             |                                       |                                                     |  |  |  |  |  |
|            |                    | 055HFE2                | 5,5KW    | 16,5 / 16,5        | FPF-8123-20 | <30mA / <10mA                         | 189mA / 101mA                                       |  |  |  |  |  |
|            |                    | 075HFE2                | 7,5KW    | 20,0 / 20,0        |             |                                       |                                                     |  |  |  |  |  |

## **Spezifikation**

Multifunktion: Ableitstrom <3,5mA und <30mA wahlweise umsteckbar.

EMV Grenzwerte nach EN 61800-3, 2001

- Bei <3,5mA Ableitstrom bis 10 Meter Motorleitung Grenzwert B, erste Umgebung Wohngebiet, uneingeschränkte Verfügbarkeit, Kategorie C1
- Bei <30mA Ableitstrom bis 25 Meter Motorleitung Grenzwert B, erste Umgebung Wohngebiet, uneingeschränkte Verfügbarkeit, Kategorie C1
- Bei <30mA Ableitstrom bis 50 Meter Motorleitung Grenzwert A, erste Umgebung Wohngebiet, eingeschränkte Verfügbarkeit, Kategorie C2


# Anschlussdaten/Verlustleistung EMV-Filter

|             | Anschl            | Verlustleistung              |      |
|-------------|-------------------|------------------------------|------|
| Modell      | Eingangsleitung   | Ausgangsleitung              |      |
| Woden       | Klemmengröße      | Leitungsquerschnitt          | [W]  |
| FPF-8122-07 | 4 mm <sup>2</sup> | 1,0 mm <sup>2</sup> / AWG 18 | 3,5  |
| FPF-8122-12 | 4 mm <sup>2</sup> | 1,5 mm <sup>2</sup> / AWG 16 | 4    |
| FPF-8122-24 | 4 mm <sup>2</sup> | 4 mm <sup>2</sup> / AWG 12   | 7,5  |
| FPF-8123-07 | 4 mm <sup>2</sup> | 1,0 mm <sup>2</sup> / AWG 18 | 3    |
| FPF-8123-11 | 4 mm <sup>2</sup> | 1,5 mm <sup>2</sup> / AWG 16 | 6,5  |
| FPF-8123-20 | 6 mm <sup>2</sup> | 2,5 mm <sup>2</sup> / AWG 14 | 12,5 |

## Abmessungen EMV-Filter

| Gehäuseabmessungen (Maße in mm) |       |        |       |                       |         |            |     |         |  |  |
|---------------------------------|-------|--------|-------|-----------------------|---------|------------|-----|---------|--|--|
| Modell                          | Länge | Breite | Tiefe | Umrichter<br>Bohrloch | Flansch | Bohrloch G |     | Gewicht |  |  |
|                                 | Α     | В      | С     | D                     | E       | F          | G   | kg      |  |  |
| FPF-8122-07                     | 120   | 80     | 30    | 110                   | 67      | 170        | 160 | 0,29    |  |  |
| FPF-8122-12                     | 130   | 110    | 30    | 118                   | 98      | 180        | 170 | 0,38    |  |  |
| FPF-8122-24                     | 130   | 110    | 30    | 118                   | 98      | 180        | 170 | 0,52    |  |  |
| FPF-8123-07                     | 130   | 110    | 30    | 118                   | 98      | 180        | 170 | 0,47    |  |  |
| FPF-8123-11                     | 130   | 110    | 30    | 118                   | 98      | 180        | 170 | 0,48    |  |  |
| FPF-8123-20                     | 220   | 180    | 37    | 205                   | 164     | 285        | 270 | 1,15    |  |  |

## Bauform



## Verdrahtungsvorbereitungen



**Schritt 5:** Es ist sehr wichtig die Verdrahtung sorgfältig und genau durchzuführen. Bevor Sie fortfahren, lesen Sie bitte die untenstehenden Warnungen und Hinweise.



WARNUNG: "Nur Verwendung von 60/75°C Kupferleitung" oder ähnliches.



WARNUNG: "Feststellung der Geräteausführung"



**WARNUNG:** Für Geräte mit der Endung N oder L muss eine passende Stromversorgung, die nicht mehr als 100.000 A Effektivstrom und maximal 240V Spannung liefert, benutzt werden.



**WARNUNG:** Für Geräte mit der Endung H muss eine passende Stromversorgung, die nicht mehr als 100.000 A Effektivstrom und maximal 480V Spannung liefert, benutzt werden.



**HOHE SPANNUNGEN:** Das Gerät muss eine Verbindung mit dem Schutzleiter haben. Andernfalls kann es zu einem Stromschlag führen oder es besteht Brandgefahr.



**HOHE SPANNUNGEN:** Verdrahtungsarbeiten müssen von qualifiziertem Personal durchgeführt werden. Andernfalls kann es zu einem Stromschlag führen oder es besteht Brandgefahr.



**HOHE SPANNUNGEN:** Nachverdrahtungen erst ausführen, nachdem sichergestellt wurde, dass die Netzversorgung ausgeschaltet ist. Andernfalls kann es zu einem Stromschlag führen oder es besteht Brandgefahr.



**HOHE SPANNUNGEN:** Verwenden Sie keinen Umrichter, der nicht entsprechend den Anweisungen in dieser Bedienungsanleitung angeschlossen wurde. Andernfalls kann es zu einem Stromschlag oder Personenschaden führen.

## Festlegung der Leitungsquerschnitte und Sicherungsgrößen

Der empfohlene Leitungsquerschnitt richtet sich nach dem maximalen Motorstrom der Anwendung. Die folgende Tabelle gibt die entsprechenden Leitungsquerschnitte an. Die Spalte "Netzversorgung" gibt den Querschnitt für die Eingangsspannung, Motorleitung Schutzleiterverbindung und alle anderen Komponenten, die im Abschnitt "Aufbau eines Antriebssystem" auf Seite 2–7 beschrieben werden, an. Die Spalte "Steuerleitungen" gibt den Querschnitt für die zwei grünen 8poligen Klemmleisten, im Inneren des Gehäuses, an.

| Motorleistung<br>(kW/PS) |       | Umrichter-Baureihe | Leitungsqu                   | Passendes<br>Zubehör                             |                                     |  |
|--------------------------|-------|--------------------|------------------------------|--------------------------------------------------|-------------------------------------|--|
| kW                       | PS    |                    | Netzversorgung               | Steuerleitung                                    | Sicherung                           |  |
| 0,2                      | 1/4   | L200-002NFEF2      | 2                            |                                                  |                                     |  |
| 0,4                      | 1/2   | L200-004NFEF2      | 1,5 mm <sup>2</sup><br>AWG16 |                                                  | 10A                                 |  |
| 0,55                     | 3/4   | L200-005NFEF2      | 7                            |                                                  |                                     |  |
| 0,75                     | 1     | L200-007NFEF2      | 1,5 mm <sup>2</sup>          |                                                  | 16A                                 |  |
| 1,1                      | 1 1/2 | L200-011NFEF2      | AWG14                        |                                                  | IOA                                 |  |
| 1,5                      | 2     | L200-015NFEF2      | 4 mm <sup>2</sup><br>AWG12   | AWG18 bis 28                                     | 30A (einphasig)<br>16A (dreiphasig) |  |
| 2,2                      | 3     | L200-022NFEF2      | 6 mm <sup>2</sup><br>AWG10   | 0,14 bis 0,75<br>mm <sup>2</sup><br>abgeschirmte | 20A (einphasig)<br>10A (dreiphasig) |  |
| 0,4                      | 1/2   | L200-004HFEF2      |                              | Leitung<br>(siehe                                | 3A                                  |  |
| 0,75                     | 1     | L200-007HFEF2      | 1,5 mm <sup>2</sup>          | Hinweis 4)                                       | 6A                                  |  |
| 1,5                      | 2     | L200-015HFEF2      | AWG16                        |                                                  | 10A                                 |  |
| 2,2                      | 3     | L200-022HFEF2      |                              |                                                  | 104                                 |  |
| 3,0                      | 4     | L200-030HFEF2      | 1,5 mm <sup>2</sup>          |                                                  | 16A                                 |  |
| 4,0                      | 5     | L200-040HFEF2      | AWG14                        |                                                  | IUA                                 |  |
| 5,5                      | 7 1/2 | L200-055HFEF2      | 4 mm <sup>2</sup>            |                                                  | 20A                                 |  |
| 7,5                      | 10    | L200-075HFEF2      | AWG12                        |                                                  | 25A                                 |  |

**Hinweis 1:** Verdrahtung mit Anschlussklemmen entsprechend dem Leitungsquerschnitt vornehmen. Verbindung unter Verwendung des geeigneten Werkzeugs des Herstellers vornehmen.

**Hinweis 2:** Beachten Sie die Größe des verwendeten Trennschalters.

**Hinweis 3:** Verwendung eines größeren Leitungsquerschnitts bei einer Länge von mehr als 20m.

**Hinweis 4:** Verwenden Sie für die Verdrahtung des Alarm-Relais ([AL0], [AL1], [AL2]) einen Leitungsquerschnitt von 0,75 mm<sup>2</sup>.

## Klemmengrößen und Befestigungsmomente

Die Größe der Schraubklemmen der Umrichter L200 sind in der unteren Tabelle aufgelistet. Diese Informationen sind für die Auswahl der benötigten Verdrahtungsmittel hilfreich. (Kabelstifte oder Kabelösen)



**ACHTUNG:** Anzug der Schraubklemmen mit angegebenen Anzugsmomenten. Auf festen Sitz ALLER Schrauben achten. Andernfalls besteht Brandgefahr.

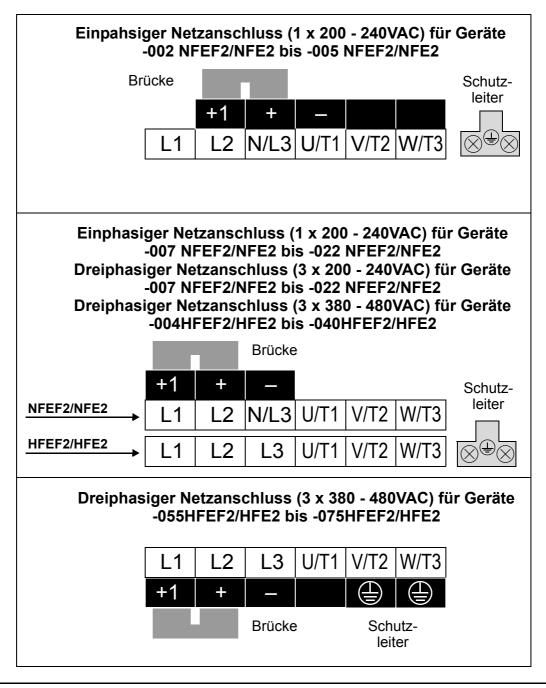
| Klemmen                  | Anzahl<br>Schraub- | Baureihe -002NFE,<br>-004NFE, -005NFE |               | Baureihe -007NFE<br>-022NFE, -004HFE,<br>-040HFE |               | Baureihe -055HFE,<br>-075HFE |               |
|--------------------------|--------------------|---------------------------------------|---------------|--------------------------------------------------|---------------|------------------------------|---------------|
| klemn                    |                    | Gewinde                               | Länge<br>(mm) | Gewinde                                          | Länge<br>(mm) | Gewinde                      | Länge<br>(mm) |
| Leistungs-<br>klemmen    | 12                 | M3,5                                  | 7,1           | M4                                               | 9             | M5                           | 13            |
| Steuerklemmen            | 16                 | M2                                    | _             | M2                                               | _             | M2                           | _             |
| Alarm-Relais             | 3                  | М3                                    | _             | М3                                               | _             | М3                           | _             |
| Schutzleiter-<br>klemmen | 2                  | M4                                    | _             | M4                                               | _             | M5                           | _             |

Bei der Verdrahtung darauf achten, dass die Schrauben mit dem entsprechenden Anzugsmoment angezogen werden.

| Gew. | Anzugsmoment          | Gew. | Anzugsmoment         | Gew. | Anzugsmoment         |
|------|-----------------------|------|----------------------|------|----------------------|
| M2   | 0,2 Nm (max. 0,25 Nm) | M3,5 | 0,8 Nm (max. 0,9 Nm) | M5   | 2,0 Nm (max. 2,2 Nm) |
| M3   | 0,5 Nm (max. 0,6 Nm)  | M4   | 1,2 Nm (max. 1,3 Nm) | _    | _                    |

## Anschluss der Netzversorgung an den Umrichter




Schritt 6: Hier wird beschrieben, wie die Netzversorgung an den Umrichter angeschlossen wird. Zuerst muss bestimmt werden, ob es sich ausschließlich um ein 3-phasiges Gerät handelt, oder ob es sich um ein Gerät handelt, an dem sowohl 1- oder 3-phasige Spannung angelegt werden kann. Alle Geräte haben die gleiche Leistungsklemmenbezeichnung [R/L1], [S/L2], und [T/L3]. Sehen Sie auf dem Typenschild (an der Umrichterseite) nach, welche Eingangsspannung benötigt wird. Für Umrichter mit einphasiger Spannungsversorgung wird die Klemme [S/L2] nicht angeschlossen.

Das Verdrahtungsbeispiel rechts zeigt einen

Das Verdrahtungsbeispiel rechts zeigt einen Umrichter L200 mit 3-phasiger Spannungsversorgung. Für eine sichere Verbindung sollten Kabelösen verwendet werden.



Verwendung der unteren Klemmenbezeichnungen zum Umrichteranschluss.

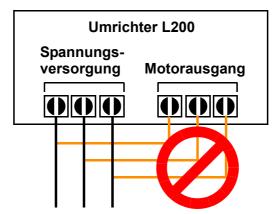




**HINWEIS:** Bei Umrichtern, die an transportablen Netzversorgungen betrieben werden, muss auf die Phasenlage geachtet werden. Die Leistung der Netzversorgung sollte dem 5fachen der Umrichterleistung (kVA) entsprechen.



**ACHTUNG:** Eingangsspannung muss mit der des Umrichters übereinstimmen:


- 1-phasig/3-phasig 200 240 V 50/60Hz (bis 2,2kW) für Baureihen NFE/NFU
- 3-phasig 200 240V 50/60Hz (über 2,2kW) für Baureihe LFU
- 3-phasig 380 480 V 50/60Hz für Baureihe HFE



**ACHTUNG:** Bei Verwendung eines Geräte für 3-phasigen Betrieb an einer 1-phasigen Netzversorgung, muss der Ausgangsstrom verringert werden. Andernfalls kann das Gerät zerstört werden und es besteht Brandgefahr.



**ACHTUNG:** Keine Spannungsversorgung an den Ausgangsklemmen anschließen. Andernfalls kann das Gerät zerstört werden und es besteht Brandgefahr.





**ACHTUNG:** Aus folgenden Gründen sollten Fehlerstromschutzschalter in der Spannungsversorgung verwendet werden:

Frequenzumrichter mit CE-Filter und abgeschirmten Motorleitungen haben einen hohen Ableitstrom zum Schutzleiter. Besonders im Einschaltmoment kann dies der Grund für eine Auslösung des Fehlerstromschutzschalters sein. Bei Eingangsfiltern des Umrichters besteht die Möglichkeit, das Auslösen durch kleine Gleichströme zu verhindern. Folgendes bitte überprüfen:

- Verwendung von allstromsensitiven selektiven Fehlerstromschutzschaltern mit hohem Auslösestrom.
- Absicherung anderer Bauteile mit separaten Fehlerstromschutzschaltern.
- Fehlerstromschutzschalter in der Eingangsverdrahtung sind kein absoluter Schutz gegen Stromschlag.



**ACHTUNG:** Sichern Sie jede Phase der Spannungsversorgung des Umrichters mit einer eigenen Sicherung ab. Andernfalls besteht Brandgefahr.

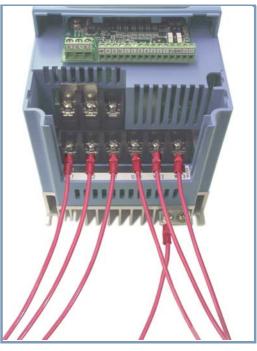


**ACHTUNG:** Motoranschlüsse, Fehlerstromschutzschalter und elektromagnetische Auslöseeinheiten sollten die passende Größe der entsprechenden Bauteile besitzen (Leistung muss dem Nennstrom und der Spannung entsprechen). Andernfalls besteht Brandgefahr.

#### Anschluss des Motors an den Umrichter



**Schritt 7**: Die richtige Motorauswahl gehört nicht zum Bereich dieser Anleitung. Es muss sich dabei in jedem Fall um einen 3-phasigen Drehstrommotor handeln. Ebenfalls sollte ein Schutzleiteranschluss vorhanden sein. Hat der Motor keine 3 Leistungsanschlüsse, unterbrechen Sie die Installation und prüfen den Motortyp. Weitere Richtlinien zur Verdrahtung beinhalten:


- Verwendung eines Motors der für Frequenzumrichter geeignet ist.
- Bei einer Leitungslänge von mehr als 10m, zwischen Umrichter und Motor, sollte eine Motordrossel verwendet werden.

Den Motor, wie rechts gezeigt, an den Klemmen [U/T1], [V/T2] und [W/T3] anschließen. Anschließend muss der Schutzleiter sowohl mit dem Umrichtergehäuse wie auch mit dem Motorgehäuse verbunden werden. Die Verdrahtung sollte eine sternförmige Anordnung haben und nicht durchgeschliffen werden.

Verwenden Sie für den Schutzleiteranschluss den gleichen Leitungsquerschnitt wie für die Spannungsversorgung im Schritt zuvor. Nach Beendigung der Verdrahtung:

- Prüfung der mechanischen Verbindung der Kabelschuhe und Klemmenanschlüsse.
- Einsetzen der Abdeckung/Kabeldurchführung für die Leistungsanschlüsse.
- Einsetzen der vorderen Gehäuseabdeckung. Zuerst die 2 Laschen einsetzen, anschließend die Abdeckung auf den Umrichter drücken, bis die Verriegelungslaschen einrasten.

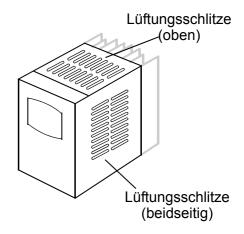
L200-037LFU Verdrahtungsbeispiel



Spannungs- Schutzleiter- Motorversorgung anschluss anschluss

# Verdrahtung der Steueranschlüsse

Nach Beendigung der grundlegenden Verdrahtung und dem Einschalttest, müssen noch die Steuerklemmen entsprechend der Anwendung verdrahtet werden. Unerfahrenen Anwendern möchten wir raten, zuerst den Einschalttest, ohne Verdrahtung der Steueranschlüsse, zu beenden. Danach kann die Einstellung der Parameter, die zur Steuerung notwendig sind, vorgenommen werden. Die genauere Beschreibung erfolgt in Kapitel 4, Bedienung und Überwachung.


## Entfernen der Lüfterabdeckungen



Schritt 8: Nach Montage und Verdrahtung des Umrichters, alle Abdeckungen vom Umrichtergehäuse entfernen. Dort kann sich, oberhalb der Ventilatoren, Reste von Verdrahtungsmaterial befinden.



**WARNUNG:** Stellen Sie sicher, dass die Spannungsversorgung ausgeschaltet ist. Nach Ausschalten sollten Sie 10 Minuten warten bis Sie fortfahren.



# **Einschalttest**



**Schritt 9:** Nach Verdrahtung von Umrichter und Motor folgt nun der Einschalttest. Die Vorgehensweise ist so ausgelegt, dass der Antrieb zum ersten Mal eingeschaltet wird. Prüfung folgender Bedingungen bevor mit dem Einschalttest begonnen wird:

- Bis zu diesem Punkt wurde alles so gemacht, wie in diesem Kapitel beschrieben.
- Der Umrichter ist neu und sicher montiert, auf einem schwer entflammbaren vertikalen Untergrund.
- Der Umrichter ist mit einer Spannungsquelle und einem Motor verbunden.
- Es wurden keine zusätzlichen Verdrahtungen von Umrichteranschlüssen oder Klemmleisten vorgenommen.
- Die Netzversorgung ist ausreichend und die Motordaten stimmen mit dem des Umrichters überein.
- · Der Motor ist sicher befestigt und unbelastet.

# Grundvoraussetzungen für den Einschalttest

Wenn es bis zu diesem Zeitpunkt einige Abweichungen von den oben genannten Bedingungen gibt, dann folgen Sie jetzt den notwendigen Anweisungen um diesen Punkt wieder zu erreichen. Grundvoraussetzungen für den Einschalttest sind:

- 1. Prüfung der richtigen Verdrahtung von Netzversorgung und Motor.
- 2. Sicherstellung das Umrichter und Motor zueinander passen.
- 3. Einführung im Umgang mit dem eingebauten Bedienfeld.

Der Einschalttest ist eine wichtige Voraussetzung, um eine sichere und erfolgreiche Anwendung mit Hitachi Umrichtern zu garantieren. Wir raten Ihnen diesen Test sorgfältig durchzuführen, bevor Sie mit weiteren Kapiteln in diesem Handbuch fortfahren.

## Vorprüfungen und betriebliche Schutzmaßnahmen

Die folgenden Anweisungen beziehen sich auf den Einschalttest, eingeschaltetem Zustand oder Betrieb. Beachten Sie Anweisungen und Hinweise bevor Sie fortfahren.

- **1.** Die Netzversorgung muss für die Last geeignet abgesichert sein. Prüfen Sie die Sicherungsgröße aus der Liste in Schritt 5.
- **2.** Die Spannungsversorgung muss über einen Schalter ausgeschaltet werden können. Den Umrichter nicht während des Betriebs, außer wenn es notwendig ist, ausschalten.
- 3. Das eingebaute Potentiometer in die Minimum-Stellung drehen (Linksanschlag).



**ACHTUNG:** Die Kühlkörperrippen können sich erhitzen. Berührung vermeiden. Andernfalls besteht Verbrennungsgefahr.



**ACHTUNG:** Durch Bedienung des Umrichters kann die Geschwindigkeit leicht geändert werden. Prüfen Sie die Möglichkeiten und Grenzwerte des Motors bzw. der Maschine, bevor er in Betrieb geht. Andernfalls besteht die Gefahr der Beschädigung.



**ACHTUNG:** Wenn der Motor an einer Frequenz betrieben wird, die höher ist als der Standardwert des Umrichters (50Hz/60Hz), vergewissern Sie sich beim entsprechenden Hersteller, ob Motor und Maschine den Anforderungen standhalten. Der Motorbetrieb mit Frequenzen die vom Standard abweichen, darf nur mit Zustimmung erfolgen. Andernfalls besteht die Gefahr der Gerätezerstörung und/oder -beschädigung.



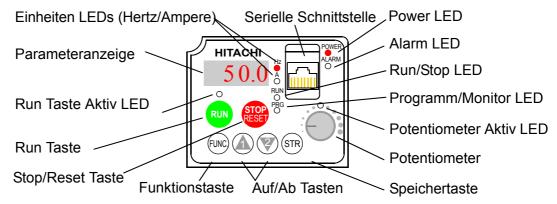
**ACHTUNG:** Folgende Prüfung vor und während des Einschalttests. Andernfalls besteht die Gefahr der Gerätezerstörung.

- Ist die Kurzschlussbrücke zwischen den Klemmen [+1] und [+] vorhanden?
   Den Umrichter NICHT OHNE diese Brücke betreiben.
- · Stimmt die Drehrichtung des Motors?
- Kommt es beim Hoch- bzw. Runterlauf des Umrichters zu einer Störung?
- Sind der Drehzahl- und Frequenzwert so wie erwartet?
- Sind unnormale Motorschwingungen bzw. -geräusche vorhanden?

#### Einschalten des Umrichters

Wenn alle Schritte, Hinweise und Warnungen bis hierher befolgt wurden, kann der Umrichter jetzt eingeschaltet werden. Danach sollte folgendes geschehen:

- Die POWER LED leuchtet.
- Die 7-Segment-Anzeige durchläuft einen Test und stoppt mit der Anzeige 0.0.
- Die Hz LED leuchtet.


Tritt ein Problem auf oder beginnt der Motor unerwartet zu laufen, drücken Sie die STOP-Taste. Die Spannung nur dann abschalten, wenn es unbedingt notwendig ist.

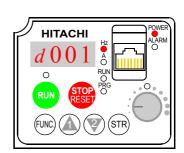


**HINWEIS:** Wenn der Umrichter eingeschaltet und programmiert wurde, leuchten die LEDs zu unterschiedlichen Zeitpunkten (außer die POWER LED). Wenn notwendig, können Sie alle Parameter wieder in die Werkseinstellung zurückstellen. Siehe "Wiederherstellen der Werkseinstellungen" auf Seite 6–9.

# **Bedienfeld**

Nehmen Sie sich einen Moment Zeit, um sich mit dem Tastaturaufbau in der unteren Zeichnung vertraut zu machen. Die Anzeige wird zum Programmieren der Parameter und zur Anzeige bestimmter Betriebsdaten während des Betriebs verwendet.




## **Bedeutung Tasten und Anzeigen**

- Run/Stop LED EIN, wenn der Frequenzumrichter eingeschaltet ist und eine Frequenz ausgegeben wird. AUS, wenn der Frequenzumrichter ausgeschaltet ist (Stop-Modus).
- Programm/Monitor LED EIN, wenn der Frequenzumrichter in der Parameterebene ist (Programmier-Modus). AUS, wenn der Frequenzumrichter im Monitor-Modus ist (d001 - d083).
- Run Key Aktiv LED EIN, wenn der Frequenzumrichter im Modus Betrieb ist und eine Frequenz ausgegeben wird. AUS, wenn der Modus Betrieb deaktiviert ist.
- Run Taste Betätigung der Taste, um den Motor zu starten (Run Taste Aktiv LED muss zuerst EIN sein). Parameter F004 "Drehrichtung" bestimmt, ob der Motor im Rechts- oder Linkslauf startet (A002 = 02).
- Stop/Reset Taste Betätigung der Taste, um den Motor zu stoppen (unter Verwendung des programmierten Verzögerungswertes). Diese Taste quittiert auch eine anstehende Störung.
- **Potentiometer** Wenn das Potentiometer aktiviert ist, kann darüber die Frequenz/ Geschwindigkeit direkt verändert werden.
- Potentiometer Aktiv LED EIN, wenn das eingebaute Potentiometer aktiviert ist (A001 = 00).
- **Parameteranzeige** Eine vierstellige Sieben-Segmentanzeige für Parameter und Funktionscodes.
- Einheiten LED (Hertz/Ampere) Anzeige der Maßeinheit für den Wert der auf der Parameteranzeige dargestellt wird.
- Power LED EIN, wenn die Spannungsversorgung des Frequenzumrichters eingeschaltet ist.
- Alarm LED EIN, wenn beim Frequenzumrichter eine Störung auftritt.
- Funktionstaste Diese Taste wird zur Navigation durch die Parameterlisten und Funktionen verwendet, die zur Einstellung und Überwachung von Parametern genutzt werden.

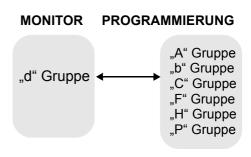
- AUF/AB Tasten ( 1, 2) Durch Einzelbetätigung dieser Tasten wird die Liste von Parametern und Funktionen, die auf dem Display angezeigt werden, durchlaufen. Weiterhin können damit Werte erhöht oder verringert werden.
- **Speichertaste (** ( ) Durch Betätigung dieser Taste wird bei der Anzeige eines Parameters dieser ins EEPROM abgespeichert.

#### Tasten, Betriebsarten und Parameter

Die Universaltastatur dient dazu, Betriebsarten und Parameter zu ändern. Die Bezeichnung *Funktion* wird für beide Betriebsarten, Monitor und Programmierung, angewendet. Diese Funktionscodes sind durch einen 4-stelligen Zeichencode ansprechbar. Die Funktionen sind in unterschiedliche Gruppen, wie in der Tabelle unten dargestellt, aufgeteilt



**PRG LED Funktions-Funktionskategorie Betriebsart Betriebsart** gruppe "d" Monitorfunktionen Monitor O "F" Basisfunktionen Programmierung "A" Standardfunktionen Programmierung "b" Feinabstimmungsfunktionen Programmierung "C" Steuerfunktionen Programmierung "H" Motorkonstanten Programmierung "P" BUS-Kommunikation (nur bei Programmierung gestecktem Modul) "E" Fehlercodes


Beispiel: Die Funktion "A004", Maximalfrequenz für den Motor, ist normalerweise 50 Hz oder 60 Hz. Um diesen Parameter anzuzeigen, muss der Umrichter in der Betriebsart "Programmierung" sein (PRG LED ist EIN). Mit den Tasten wählen Sie zuerst den Funktionscode "A004" aus. Nach Anzeige des Wertes, ändern Sie diesen mit den Tasten Auf/Ab (  $\wedge$  oder  $\checkmark$  ).






**HINWEIS:** Die 7-Segment-Anzeige zeigt ein kleingeschriebenes "b" und "d". Dies hat die gleiche Bedeutung wie das großgeschriebene "B" und "D" (bei "A" bis "F" ist es einheitlich).

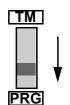
Der Umrichter schaltet automatisch in die Betriebsart "Monitor", wenn die Gruppe "d" angewählt wird. Bei allen anderen wird in die Betriebsart "Programmierung" umgeschaltet, weil es dort veränderbare Parameter gibt. Die Gruppe "E" wird für Fehlercodes verwendet und zeigt automatisch bei Auftreten eines Fehlers diesen an. Siehe Kapitel "Auslöseereignisse, Störspeicher, Bedingungen" auf Seite 6–6 für genauere Fehlercodebeschreibung.



# Übersicht zur Navigation per Tastatur

Die Modellreihe L200 hat programmierbare Funktionen und Parameter. Eine genauere Beschreibung erfolgt in Kapitel 3, doch einige grundsätzliche Begriffe werden für den Einschalttest benötigt. Die Menüstruktur verwendet Funktions- und Parametercodes die es ermöglichen, Programmierungen und Überwachungen mit Hilfe der 4-stelligen Anzeige, den Tasten und LEDs vorzunehmen. Daher ist es wichtig sich mit der Grundstruktur vertraut zu machen.




Die Struktur zeigt die Beziehung aller Parameter des Umrichters auf einen Blick. Hauptsächlich wird die Taste FUNC zum Bewegen nach links und rechts, und die Tasten 🖄 zum Bewegen nach oben und unten, verwendet.

#### Funktionsauswahl und Parametereinstellung

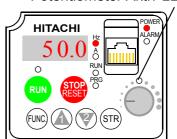
Zur Ansteuerung eines Motors, beim ersten Einschalten, werden in diesem Abschnitt die Konfiguration der nötigsten Parameter gezeigt:

- 1. Einstellung des DIP-Schalters TM/PRG (Standard PRG).
- 2. Einstellung des Potentiometers als Frequenzsollwertvorgabe (A001).
- 3. Einstellung der Taste RUN als Startvorgabe (A002)
- 4. Einstellung der Motornennfrequenz (A003).
- 5. Einstellung des elektronischen Motorschutzes (b012).
- 6. Einstellung der Motorspannungsanpassung (AVR) (A082).
- 7. Einstellung der Motorleistung (H003) und Motorpolzahl (H004).

Folgende Parameterlisten führen zu einer erfolgreichen Programmierung. Jede Tabelle beginnt mit dem Schritt, mit dem die vorherige geendet hat. Beginnen Sie mit der Ersten und führen die Programmierung bis zur Letzten durch. Wenn Sie sich vertan haben oder feststellen, dass einige Parameter falsch sind, sehen Sie in Kapitel "Wiederherstellen der Werkseinstellungen" auf Seite 6–9 nach.



**Einstellung DIP-Schalter TM/PRG** - Dieser Schalter muss in der Stellung "PRG" stehen (Werkseinstellung), damit die Parameter A001 und A002 wirksam sind. Andernfalls kann kein Startbefehl bzw. Frequenzsollwertvorgabe über die Tastatur erfolgen. Bei Änderung der Schaltereinstellung, siehe "DIP-Schalter" auf Seite 2–5.

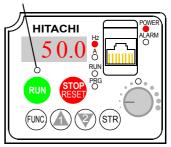

Vorbereitung Parametereinstellung - Dieser Abschnitt beginnt mit dem Einschalten des Umrichters, dann wird der Wechsel in die Parametergruppe "A" gezeigt. Sie können sich auch, zur Orientierung außerhalb dieser Schritte, auf den Abschnitt "Übersicht zur Navigation per Tastatur" auf Seite 2–30 beziehen.

| Vorgang                  | Anzeige   | Funktion/Parameter                               |
|--------------------------|-----------|--------------------------------------------------|
| Umrichter einschalten    | 0.0       | Anzeige der Ausgangs-<br>frequenz (0Hz bei Stop) |
| Drücken der Taste (FUNC) | (d 0 0 1) | Auswahl Gruppe "d"                               |
| Drücken der Taste (4mal) | A         | Auswahl Gruppe "A"                               |

#### Auswahl Potentiometer zur Sollwertvorgabe

Es gibt verschiedene Möglichkeiten zur Frequenzvorgabe. Zum Beispiel durch einen Analogeingang, Parametereinstellung oder Netzwerk. In der Grundeinstellung ist die Sollwertvorgabe über einen Analogeingang eingestellt. Bei "Potentiometer Aktiv LED" EIN, ist das Potentiometer aktiv. Beachten Sie, dass die Werkseinstellungen länderspezifisch sind.

Potentiometer Aktiv LED




Bei LED AUS, folgen Sie den unten beschriebenen Schritten.

| Vorgang                             | Anzeige | Funktion/Parameter                                                                                                      |
|-------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------|
| (Ausgangsanzeige)                   | A       | Auswahl Gruppe "A"                                                                                                      |
| Drücken der Taste (FUNC)            | A001    | Frequenzsollwertvorgabe                                                                                                 |
| Wiederholtes Drücken der Taste FUNC | 01      | 00 = eingeb. Potentiometer<br>01 = Eingang O/OI<br>02 = F001/A020<br>03 = RS485 (ModBus)<br>10 = Logische Verknüpfungen |
| Drücken der Taste 🖤                 | 00      | 00 = Potentiometer (ausgewählt)                                                                                         |
| Drücken der Taste (STR)             | A001    | Parameter speichern, zurück<br>zur Gruppe "A"                                                                           |

Auswahl Taste RUN als Startbefehl - Durch den Startbefehl wird der Umrichter gestartet und der Motor läuft mit der eingestellten Geschwindigkeit. Die Auswahlmöglichkeiten sind verschieden, über Steuerklemmen, RUN-Taste oder Netzwerk. Beachten Sie die "RUN Taste Aktiv LED" rechts. Bei LED EIN ist die RUN Taste aktiv, und Sie können zum nächsten Schritt gehen. Beachten Sie, dass die Werkseinstellungen länderspezifisch sind. Bei LED AUS folgen Sie den unten beschriebenen Schritten (Die Tabelle beginnt mit dem Vorgang aus der vorangegangenen).

Run Taste Aktiv LED



| Vorgang                  | Anzeige Funktion/Parameter |                                                             |
|--------------------------|----------------------------|-------------------------------------------------------------|
| (Ausgangsanzeige)        | A001                       | Frequenzsollwertvorgabe                                     |
| Drücken der Taste 🛦      | A002                       | Auswahl Startbefehl                                         |
| Drücken der Taste (FUNC) | 01                         | 01 = Eingang FW/RV<br>02 = RUN-Taste<br>03 = RS485 (ModBus) |
| Drücken der Taste 🛦      | 02                         | 02 = RUN-Taste (ausgewählt)                                 |
| Drücken der Taste STR    | A002                       | Parameter speichern, zurück zur Gruppe "A"                  |



**HINWEIS:** Die "Run Taste Aktiv LED" ist nach Ausführung der Schritte EIN. Dies bedeutet nur, dass die RUN-Taste aktiv ist, und nicht, dass der Motor läuft. KEINE Betätigung der RUN-Taste, sondern beenden Sie erst die Parametrierung.

**Einstellung Motornennfrequenz** - Der Motor ist für den Betrieb mit einer Frequenz bestimmt. Die meisten Motoren sind für eine Frequenz von 50/60 Hz vorgesehen. Prüfen Sie zuerst diese Einstellung. Dann folgen Sie den Schritten, um den Wert zu kontrollieren bzw. anzupassen. Wählen Sie KEINE Einstellung die größer als 50/60 Hz ist, außer wenn der Hersteller dies ausdrücklich erlaubt.

| Vorgang                    | Anzeige          | Funktion/Parameter                                                     |
|----------------------------|------------------|------------------------------------------------------------------------|
| (Ausgangsanzeige)          | A002             | Auswahl Startbefehl                                                    |
| Drücken der Taste 🛦        | A003             | Motornennfrequenz                                                      |
| Drücken der Taste (FUNC)   | 60<br>oder<br>50 | Grundeinstellung Nennfrequenz: US = 60 Hz, Europa = 50 Hz.             |
| Drücken der Taste 🛦 oder 😢 | 60               | Einstellung entsprechend<br>Motortypenschild (evtl. andere<br>Anzeige) |
| Drücken der Taste (STR)    | A003             | Parameter speichern, zurück zur Gruppe "A"                             |



**ACHTUNG:** Wenn der Motor mit einer Frequenz betrieben wird die höher ist als die Grundeinstellungen des Umrichters (50/60 Hz), vergewissern Sie sich beim Hersteller, ob der Motor bzw. die Maschine dafür ausgelegt ist. Betreiben Sie den Motor an anderen Frequenzen nur nach ausdrücklicher Zustimmung. Andernfalls besteht Zerstörungsgefahr der Anlage.

**Einstellung Motorspannungsanpassung (AVR) -** Der Umrichter hat eine automatische Spannungsanpassung (AVR). Die Ausgangsspannung wird auf die Nennspannung des Motors (Typenschild) eingestellt. Beachten Sie jedoch, dass dies keine Spannungsanhebung im Falle eines Spannungsabfalls ist. Verwenden Sie die Einstellung AVR (A082), um den Motor auf eine der Spannungen abzugleichen.

- Baureihe 200V: 200 / 215 / 220 / 230 / 240 VAC
- Baureihe 400V: 380 / 400 / 415 / 440 / 460 / 480 VAC



**TIPP:** Wenn Sie schnell eine Funktions- oder Parameterliste durchlaufen möchten, drücken und halten Sie die Tasten  $\triangle$  oder  $\bigcirc$  zum automatischen Durchlauf der Liste. Zur Einstellung der Motorspannung folgen Sie den Schritten auf der folgenden Seite.

| Vorgang                           | Anzeige            | Funktion/Parameter                                                                             |
|-----------------------------------|--------------------|------------------------------------------------------------------------------------------------|
| (Ausgangsanzeige)                 | A003               | Motornennfrequenz                                                                              |
| Drücken/Halten der Taste (a) bis> | A082               | Spannungsanpassung (AVR)                                                                       |
| Drücken der Taste (FUNC)          | 230<br>oder<br>400 | Grundeinstellung AVR:<br>200V = 230VAC<br>400V = 400VAC (-HFE / -HFEF)<br>400V = 460VAC (-HFU) |
| Drücken der Taste 🛦 oder 🕎        | 215                | Einstellung entsprechend Motor-<br>typenschild<br>(evtl. andere Anzeige)                       |
| Drücken der Taste (STR)           | A082               | Parameter speichern, zurück zur Gruppe "A"                                                     |

**Einstellung elektronischer Motorschutz -** Der Umrichter hat einen thermischen Überlastschutz, der zum Schutz des Umrichters bzw. Motors, durch Überlastung, bestimmt ist. Zum Überlastschutz des Motors muss der Motornennstrom unter b012 eingegeben werden. Der Wert des thermischen Überlastschutzes (b012) ist von 20% bis 120% des Umrichternennstroms einstellbar.

Überprüfen Sie den Motornennstrom auf dem Herstellertypenschild. Folgen Sie dann den unten aufgeführten Schritten und stellen den thermischen Überlastschutz ein.

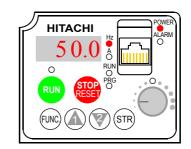
| Vorgang                         | Anzeige        | Funktion/Parameter                                                       |
|---------------------------------|----------------|--------------------------------------------------------------------------|
| (Ausgangsanzeige)               | A082           | Spannungsanpassung (AVR)                                                 |
| Drücken der Taste (FUNC)        | A              | Auswahl Gruppe "A"                                                       |
| Drücken der Taste 🛦             | <u>b</u>       | Auswahl Gruppe "b"                                                       |
| Drücken der Taste (FUNC)        | <b>b</b> 0 0 1 | Erster Parameter Gruppe "b"                                              |
| Drücken/Halten der Taste 🏠 bis> | <b>b</b> 0 1 2 | Elektronischer Motorschutz                                               |
| Drücken der Taste (FUNC)        | 1.60           | Grundeinstellung ist 100% des Motornennstroms                            |
| Drücken der Taste 🛦 oder 같      | 1.80           | Einstellung entsprechend Motor-<br>typenschild<br>(evtl. andere Anzeige) |
| Drücken der Taste STR           | <b>b</b> B0 1  | Parameter speichern, zurück zur Gruppe "b"                               |

**Einstellung der Motorpolzahl** - Mit der Art der Motorwicklung wird auch die Anzahl der Motorpole festgelegt. Das Typenschild auf dem Motor gibt in der Regel Auskunft über die Anzahl der Motorpole. Für einen korrekten Betrieb, muss die Motorpolzahl korrekt unter H006 eingegeben werden. Die meisten Motoren haben, entsprechend der Grundeinstellung im Umrichter (H004), 4 Pole.

Überprüfen Sie die Anzahl der Motorpole auf dem Herstellertypenschild und ändern Sie die Einstellung, falls notwendig. Folgen Sie dann den unten aufgeführten Schritten (Die Tabelle beginnt mit dem Vorgang aus der vorangegangenen Tabelle).

| Vorgang                    | Anzeige        | Funktion/Parameter                                                      |
|----------------------------|----------------|-------------------------------------------------------------------------|
| (Startpunkt)               | <b>b</b> 0 1 2 | Elektronischer Motorschutz                                              |
| Drücken der Taste (FUNC)   | <u>b</u>       | Auswahl Gruppe "b"                                                      |
| Drücken der Taste (2mal)   | H              | Auswahl Gruppe "H"                                                      |
| Drücken der Taste (FUNC)   | H003           | Erster Parameter Gruppe "H"                                             |
| Drücken der Taste 🛦        | H004           | Motorpolzahl                                                            |
| Drücken der Taste (FUNC)   | 4              | 2 = 2 Pole<br>4 = 4 Pole (Grundeinstellung)<br>6 = 6 Pole<br>8 = 8 Pole |
| Drücken der Taste 🛦 oder 🕎 | 4              | Einstellung entsprechend<br>Motortypenschild<br>(evtl. andere Anzeige)  |
| Drücken der Taste (STR)    | H004           | Parameter speichern, zurück zur Gruppe "H"                              |

Dieser Schritt schließt die Parametereinstellungen für den Umrichter ab. Jetzt kann der Motor zum ersten Mal gestartet werden!




**TIPP:** Wenn Sie sich bei der Eingabe dieser Schritte vertan haben, kontrollieren Sie zuerst den Status der PRG LED. Dann sehen Sie im Kapitel "Übersicht zur Navigation per Tastatur" auf Seite 2–30, zur Bestimmung des Zustandes der Tasten und Anzeige nach. Solange Sie nicht die Speichertaste (STR) drücken, wird keine Parameteränderung übernommen. Beachten Sie, dass beim Aus-/Einschalten des Umrichters dieser im Monitor-Modus startet und den Wert der Ausgangsfrequenz (d001) anzeigt. Im nächsten Abschnitt wird gezeigt, wie Betriebsdaten in der Monitorebene mit der Anzeige überwacht werden. Dann werden Sie bereit sein, um den Motor zu starten.

## Betriebsdatenüberwachung mit der Anzeige

Nach Verwendung der Tastatur zur Parametereinstellung, wird nun vom Programmier- in den Monitor-Modus gewechselt. Die PRG LED ist AUS und die LED für Hertz oder Ampere zeigt an, welche Einheit die Anzeige darstellt.

Beim Einschalten wird die Motorgeschwindigkeit durch Darstellung der Ausgangsfrequenz überwacht.



Die Überwachungsfunktionen befinden sich

in der Gruppe "d", im Abschnitt "Übersicht zur Navigation per Tastatur" auf Seite 2–30 dargestellt.

Überwachung Ausgangsfrequenz - Ausgehend von der Tastaturbedienung in der vorherigen Tabelle, folgen Sie den Schritten unten. Sie können auch den Umrichter aus-/einschalten, dann startet er automatisch mit der Anzeige der Ausgangsfrequenz (d001).

| Vorgang                  | Anzeige        | Funktion/Parameter       |
|--------------------------|----------------|--------------------------|
| Drücken der Taste (FUNC) | H              | Auswahl Gruppe "H"       |
| Drücken der Taste 🛦      | <u>d</u> 0 0 1 | Ausgangsfrequenz         |
| Drücken der Taste (FUNC) | 0.0            | Anzeige Ausgangsfrequenz |

Bei Anzeige von Betriebsdaten ist die PRG LED AUS. Der Umrichter ist nicht im Programmier-Modus (Auswahl eines Überwachungsparameters). Die momentane Geschwindigkeit (im oben genannten Beispiel) wird angezeigt. Die LED Hertz ist EIN, bei Stromanzeige wird die LED Ampere EIN sein.

#### **Motorstart**

Wenn Sie bis zu diesem Punkt alle Parameter programmiert haben, kann nun der Motor gestartet werden. Überprüfen Sie jedoch zuerst diese Liste:

- **1.** Prüfung, ob "Power LED" EIN ist. Ansonsten, Überprüfung der Einspeisung.
- **2.** Prüfung, ob "Potentiometer Aktiv LED" EIN ist. Ansonsten, Parameter A001 überprüfen.
- 3. Prüfung, ob "Run Taste Aktiv LED" EIN ist. Ansonsten, Parameter A002 überprüfen.
- **4.** Prüfung, ob "PRG LED" AUS. Sonst wiederholen der oben genannten Anweisungen.
- 5. Motor ist unbelastet.
- **6.** Potentiometer in Minimum-Stellung (Linksanschlag).
- 7. Drücken der RUN-Taste. Wechsel der "RUN LED" auf EIN.
- **8.** Potentiometer im Uhrzeigersinn drehen. Motor beginnt sich zu drehen.
- 9. Drücken der STOP-Taste, um den Motor zu stoppen.

## Einschaltüberwachungen und Auswertungen

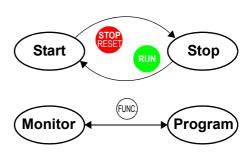


Schritt 10: Dieser Abschnitt wird Ihnen beim Durchlesen einige nützliche Hinweise 10) bezüglich der Überwachung wärend des ersten Motorstarts geben.

Fehlermeldungen - Wenn der Umrichter eine Fehlermeldung anzeigt ("E X X"), siehe Kapitel "Auslöseereignisse, Störspeicher, Bedingungen" auf Seite 6-6, um sie zu deuten und den Fehler zu löschen.

Beschleunigung und Verzögerung - Der Umrichter L200 hat programmierbare Beschleunigungs- und Verzögerungswerte. Die Grund-/Werkseinstellung beträgt 10 Sekunden. Sie können dies ausprobieren, indem Sie das Potentiometer, vor Motorstart, ungefähr in die Mittelstellung bringen. Dann drücken Sie die RUN-Taste und der Motor benötigt 5 Sekunden bis zum Erreichen einer konstanten Geschwindigkeit. Nach Drücken der STOP-Taste wird er auch 5 Sekunden benötigen bis er stoppt.

Umrichterstatus bei Stop - Wird die Geschwindigkeit auf 0 eingestellt, läuft der Motor langsam herunter und der Umrichter schaltet den Ausgang ab. Der Umrichter L200 kann kleine Geschwindigkeiten auch mit hohen Drehmomenten fahren, jedoch nicht 0 (Verwendung von Servo-Systemen mit Positionsrückführung). Für diese Charakteristik muss bei der entsprechenden Anwendung eine mechanische Bremse verwendet werden.


Darstellung der Anzeige - Zuerst beziehen wir uns auf die Anzeige der Ausgangsfrequenz. Die Grundeinstellung der Maximalfrequenz (A004) ist 50 Hz (Europa) oder 60 Hz (USA).

Beispiel: Ein 4-poliger Motor soll mit 50 Hz betrieben werden. Der Umrichter muss so konfiguriert werden, dass er bei maximalem Sollwert eine Frequenz von 50 Hz ausgibt. Nutzen Sie folgende Formel zur Berechnung der Drehzahl (RPM = U/min).

Speed in RPM = 
$$\frac{Frequenz \times 50}{\text{Polpaarzahl}} = \frac{Frequenz \times 120}{\text{\# Polzahl}} = \frac{50 \times 120}{4} = 1500\text{RPM}$$

Die Synchrondrehzahl des Motors beträgt 1500 U/min (RPM). Ein Asynchronmotor erzeugt erst dann Drehmoment, wenn die Frequenz des elektrischen Drehfeldes (Ausgangsfrequenz des Umrichters) und die Drehfrequenz des Läufers unterschiedlich sind. Der Drehzahlunterschied wird als Schlupf bezeichnet. So ist die ungefähre Nenndrehzahl von ca. 1450 U/min eines 4-poligen Motors bei 50 Hz zu erklären. Benutzen Sie ein Drehzahlmessgerät, um die Wellendrehzahl zu messen, und Sie können den Unterschied zwischen der Ausgangsfreguenz des Umrichters und der aktuellen Motordrehzahl erkennen. Mit steigender Last steigt auch etwas der Schlupf. Darum wird der Ausgangswert des Umrichters "Frequenz" genannt, weil sie nicht genau der Motorgeschwindigkeit entspricht.

Start/Stop verglichen mit Monitor-/Programmier- Modus - Die Run LED ist im Run-Modus EIN und im Stop-Modus AUS. Die Program LED ist im Programmier-Modus EIN und im Monitor-Modus AUS. Alle vier Kombinationen sind möglich. Die Darstellung rechts zeigt die verschiedenen Modi und den Moduswechsel über die Tastatur.





HINWEIS: Einige Automationsbaugruppen (SPS) haben einen wechselnden Run-/ Programmier-Modus. Es ist nur ein Modus aktiv. Bei Hitachi Umrichtern wechselt der Run-Modus mit dem Stop-Modus und der Programmier-Modus mit dem Monitor-Modus. Durch diese Möglichkeit können bestimmte Parameter auch während des Umrichterbetriebs geändert werden.

| In diesem Kapitel                       | Seite |
|-----------------------------------------|-------|
| — Auswahl der Programmiereinheit        | 2     |
| — Bedienung über Tastatureinheit        | 3     |
| — Gruppe "d": Monitorfunktionen         | 6     |
| — Gruppe "F": Basisfunktionen           | 9     |
| — Gruppe "A": Standardfunktionen        | 10    |
| — Gruppe "b": Feinabstimmungsfunktionen | 34    |
| — Gruppe "C": Steuerfunktionen          | 49    |
| — Gruppe "H": Motorkonstanten           | 64    |
| — Gruppe "P": BUS-Kommunikation         | 65    |

# Auswahl der Programmiereinheit

## **Einleitung**

Frequenzgeregelte Antriebe von Hitachi verwenden die modernste Technologie, zum Antreiben von Motoren. Der Nutzen, der daraus gezogen wird, sind Energieeinsparungen und höhere Produktivität der Maschinen. Der flexible Anwendungsbereich erfordert einen immer umfangreicheren konfigurierbaren Bereich an Optionen und Parametern - Umrichter sind heutzutage komplexe industrielle Automationskomponenten. Dies könnte die Bedienung schwierig erscheinen lassen, doch dieses Kapitel setzt sich als Ziel, dies für Sie so einfach wie möglich darzustellen.

Wie beim Einschalttest in Kapitel 2 beschrieben, müssen nicht viele Parameter programmiert werden, um den Motor zu starten. Tatsächlich müssen bei den meisten Anwendungen nur einige Parameter angepasst werden. Dieses Kapitel beschreibt die Funktion der einzelnen Parameter und hilft eine Auswahl zu treffen, welche für die Anwendung wichtig sind.

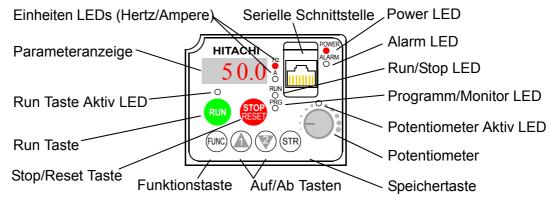
Bei Entwicklung einer neuen Anwendung für Umrichter und Motor, dienen die meisten Parameter meistens zu Optimierungszwecken. Am Anfang reicht es aus den Motor nur laufen zu lassen. Bei Änderung von speziellen Parametern und deren Beobachtung kann dann die nötige Feinabstimmung erreicht werden.

## Einführung in die Umrichter-Programmierung

Die Tastatur ist der beste Weg um alle Funktionen des Umrichters kennenzulernen. Jede Funktion/Parameter ist über die Tastatur zugänglich. Die anderen Bediengeräte bilden in erster Linie die Tastatur und den Umrichter nach, trotzdem bieten diese Geräte noch weitere wertvolle Aspekte für das System. Die Bedieneinheit/Kopiereinheit überträgt Parametereinstellungen von einem Umrichter zum anderen.

| Rodionoinhoit   | Redieneinheit   Artikel-Nr      | Parameter-     | Parameter-                                                   | Kabel     |       |     |
|-----------------|---------------------------------|----------------|--------------------------------------------------------------|-----------|-------|-----|
| Dedienennier    |                                 | sicherung      | Artikel-Nr.                                                  | Länge     |       |     |
| Bedientastatur, | OPE-                            | 1              |                                                              | EEPROM im | ICS-1 | 1 m |
| abnenmbar       | abnehmbar SRmini Programmierung | Umrichter      | ICS-3                                                        | 3 m       |       |     |
| Bedieneinheit/  |                                 | Herunterla-    | ICS-1                                                        | 1 m       |       |     |
| Kopiereinheit   |                                 | Programmierung | den von<br>Lesedaten<br>ins EEPROM<br>der Bedie-<br>neinheit | ICS-3     | 3 m   |     |



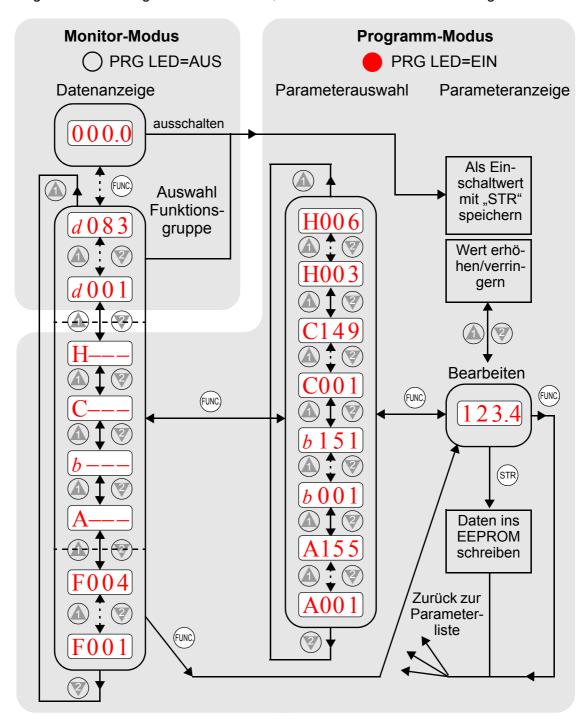

**HINWEIS:** Bei Anschluss einer externen Bedieneinheit, wie OPE-SRmini / SRW-0EX, ist die Umrichtertastatur automatisch deaktiviert (Ausnahme Stop-Taste)



**HINWEIS:** Bei Verwendung der Kopiereinheit SRW-0EX können keine Parameter zwischen den Geräteversionen 1 und 2 kopiert werden.

# Bedienung über Tastatureinheit

Die Tastatur des Umrichters L200 beinhaltet alle Elemente um Betriebsdaten und Parameter zu programmieren. Der Tastaturaufbau ist unten dargestellt. Alle anderen Programmiereinheiten haben einen ähnlichen Aufbau.



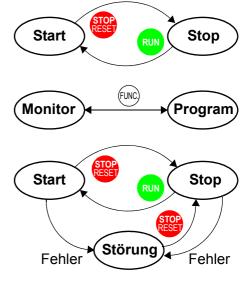

## **Bedeutung Tasten und Anzeigen**

- **Run/Stop LED** EIN, wenn der Frequenzumrichter eingeschaltet ist und eine Frequenz ausgegeben wird. AUS, wenn der Frequenzumrichter ausgeschaltet ist (Stop-Modus).
- Programm/Monitor LED EIN, wenn der Frequenzumrichter in der Parameterebene ist (Programmier-Modus). AUS, wenn der Frequenzumrichter im Monitor-Modus ist (d001 - d083).
- Run Key Aktiv LED EIN, wenn sich der Frequenzumrichter im Modus Betrieb befindet.
   AUS, wenn der Modus Betrieb deaktiviert ist.
- Run Taste Betätigung der Taste, um den Motor zu starten (Run Taste Aktiv LED muss zuerst EIN sein). Parameter F004 "Drehrichtung" bestimmt, ob der Motor im Rechts- oder Linkslauf startet (A001 = 02).
- Stop/Reset Taste Betätigung der Taste, um den Motor zu stoppen (unter Verwendung des programmierten Verzögerungswertes). Diese Taste quittiert auch eine anstehende Störung.
- **Potentiometer** Wenn das Potentiometer aktiviert ist, kann darüber die Frequenz/ Geschwindigkeit direkt verändert werden.
- Potentiometer Aktiv LED EIN, wenn das eingebaute Potentiometer aktiviert ist (A001 = 00).
- **Parameteranzeige** Eine vierstellige Sieben-Segmentanzeige für Parameter und Funktionscodes.
- Einheiten LED (Hertz/Ampere) Anzeige der Maßeinheit für den Wert der auf der Parameteranzeige dargestellt wird.
- Power LED EIN, wenn die Spannungsversorgung des Frequenzumrichters eingeschaltet ist
- Alarm LED EIN, wenn beim Frequenzumrichter eine Störung auftritt.
- **Funktionstaste** Diese Taste wird zur Navigation durch die Parameterlisten und Funktionen verwendet, die zur Einstellung und Überwachung von Parametern genutzt werden.
- **AUF/AB Tasten (** <u>A</u>, <del>Z</del>) Durch Einzelbetätigung dieser Tasten wird die Liste von Parametern und Funktionen, die auf dem Display angezeigt werden, durchlaufen. Weiterhin können damit Werte erhöht oder verringert werden.
- **Speichertaste (** sir ) Durch Betätigung dieser Taste wird bei der Anzeige eines Parameters dieser ins EEPROM abgespeichert.

# Übersicht zur Navigation per Tastatur

Mit der Bedientastatur kann zu jedem Parameter oder Funktion navigiert werden. Das Diagramm unten zeigt den Grundaufbau, um auf bestimmte Ebenen zuzugreifen.






**HINWEIS:** Die Speicher-Taste speichert den bearbeiteten Parameter in das Umrichter-EEPROM. Upload und Download zu/von einer externen Einheit ist mit einem anderen Befehl möglich, jedoch nicht mit dieser Bedieneinheit. Verwechseln Sie nicht *Speichern* mit *Download* und *Upload*.

#### Betriebsarten

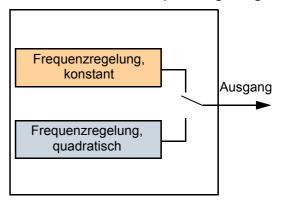
Die RUN- und PRG-LED geben darüber Auskunft, dass es sich hierbei um eigenständige Modi handelt.

Das Auftreten eines Fehlers während des Betriebs versetzt den Umrichter in den Störmodus. Beim Auftreten einer Ausgangsüberlastung wird der Umrichter den Run-Modus verlassen und den Ausgang zum Motor abschalten. Im Störmodus wird jeder Versuch des Neustarts ignoriert. Die Störung muss, durch Drücken der Stop/Reset-Taste, gelöscht werden. Siehe "Auslöseereignisse, Störspeicher, Bedingungen" auf Seite 6–6.



## **Bearbeitung im Run-Modus**

Der Umrichter befindet sich im Run-Modus (Umrichterausgang regelt den Motor) und trotzdem können verschiedene Parameter geändert werden. Dies ist bei Anwendungen die ständig laufen müssen sehr nützlich.


Die Parametertabellen in diesem Kapitel haben eine Spalte die mit "Bearbeitung im Run-Modus" bezeichnet ist. "Nein" in dieser Spalte bedeutet, dass der Parameter nicht bearbeitet werden kann, und "Ja" das er während des Betriebs geändert werden kann. Die Softwaresperre (b031) legt den Zugang zum Run-Modus fest. Der Anwender legt die Freigabe/Sperrung bestimmter Parameter zur Umrichterbedienung durch das Personal fest. Sehen Sie auch "Parametersicherung" auf Seite 3–39.

| Einst.<br>im<br>RUN |  |
|---------------------|--|
| Nein                |  |
| Ja                  |  |
|                     |  |

# Arbeitsverfahren Frequenzregelung

Unter Funktion A044 können 2 verschiedene Arbeitsverfahren angewählt werden. Das Ziel besteht darin, in der Anwendung, das beste Arbeitsverfahren für den Motor zu erhalten. Wählen Sie in Ihrer Anwendung möglichst früh das beste Arbeitsverfahren.

#### Arbeitsverfahren Frequenzregelung



# Gruppe "d": Monitorfunktionen

Mit der Gruppe "d" hat man Zugang zu einigen wichtigen Systemparametern, gleich ob der Umrichter sich im Run- oder Stop-Modus befindet. Nach Auswahl des zu überwachenden Funktionscodes drücken Sie die Funktionstaste, um den Wert angezeigt zu bekommen. Bei der Funktion d005 und d006 wird der Status der digitalen Eingänge und Ausgänge als Balken in der 7-Segment-Anzeige, dargestellt.

Wenn bei der Anzeige eines Überwachungsparameters die Spannung ausfällt, speichert der Umrichter die augenblickliche Überwachungsfunktion. Beim nächsten Einschalten kehrt die Anzeige wieder an die gleiche Stelle zurück.

|        | "d" Fu                                                                       | nktionen                                                                    | Einst.    | Einheit |
|--------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------|---------|
| FktNr. | Funktion /<br>SRW-Anzeige                                                    | Beschreibung                                                                | im<br>RUN |         |
| d001   | Ausgangsfrequenz<br>FM 0000,00Hz                                             | Anzeige Ausgangsfrequenz des<br>Motors<br>0,0 400,0 Hz                      | _         | Hz      |
| d002   | Motorstrom Iout 0000,0A                                                      | Anzeige Ausgangsstrom des<br>Motors<br>0 FU-Nennstrom                       | _         | Α       |
| d003   | Drehrichtung Dir STOP                                                        | 3 Einstellungen:<br>00 Stop<br>01 Rechtslauf<br>02 Linkslauf                | _         | _       |
| d004   | Istwert x Anzeigefaktor [%] (nur verfügbar wenn PID-Regler aktiv)            | Einstellung Anzeigefaktor der<br>Funktion A075 im Bereich von<br>0,00 99900 | _         | %       |
| d005   | FB 00000,00%  Signalzustand Digital-Eingänge  IN-TM LLLLLL                   | Zustand Digital-Eingänge:  ON OFF  5 4 3 2 1 Klemmen-Nummer                 | _         | _       |
| d006   | Signalzustand Digital-Ausgänge 11, 12 und Relaisaus- gang AL0-AL2 OUT-TM LLL | Zustand Digital-Ausgänge:  ON  AL 12 11  Klemmen-Nummer                     | _         | _       |

|        | "d" Fu                               | nktionen                                                                                                                         | Einst.    |         |  |
|--------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------|---------|--|
| FktNr. | Funktion /<br>SRW-Anzeige            | Beschreibung                                                                                                                     | im<br>RUN | Einheit |  |
| d007   | Ausgangsfrequenz x<br>Frequenzfaktor | Anzeige Produkt aus Frequenz-<br>faktor (Funktion b086) und                                                                      |           | Hz      |  |
|        | F-Cnv 00000,00                       | Ausgangsfrequenz<br>XX.XX 0,00 - 99,99<br>XXX.X 100,0 - 999,9<br>XXXX. 1000, - 9999,<br>XXXX 1000 - 9999 (x10=<br>10000 - 99999) |           |         |  |
| d013   | Ausgangsspannung                     | Ausgangsspannung Motor                                                                                                           | _         | V       |  |
|        | Vout 00000V                          | 0,0 - 600,0V                                                                                                                     |           |         |  |
| d016   | Betriebszeit                         | Umrichter RUN-Modus                                                                                                              | _         | Stunden |  |
|        | RUN 0000000hr                        | 0 - 9999 /<br>  1000 - 9999 /<br>  T100 - T999 (10.000 - 99.900)                                                                 |           |         |  |
| d017   | Netz-Ein Zeit                        | Umrichter Netz-Ein                                                                                                               | _         | Stunden |  |
|        | ON 0000000hr                         | 0 999000 /<br>1000 - 9999 /<br>T100 - T999 (10.000 - 99.900)                                                                     |           |         |  |

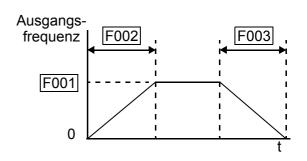
# Fehlerereignis und Überwachungsspeicher

Unter d0081 - d083 werden die 3 zuletzt aufgetretenen Störungen, mit den entsprechenden Betriebsdaten, abgespeichert. Siehe auch "Auslöseereignisse, Störspeicher, Bedingungen" auf Seite 6–6.

|        | "d" Funktionen                         |                                           |           |         |
|--------|----------------------------------------|-------------------------------------------|-----------|---------|
| FktNr. | Funktion /<br>SRW Anzeige              | Beschreibung                              | im<br>RUN | Einheit |
| d080   | Gesamtzahl aufgetretener Störungen     | Anzahl Störungen<br>0 - 9999              | _         | Anzahl  |
|        | ERR CNT 00000                          |                                           |           |         |
| d081   | Störung (Zuletzt aufgetretene Störung) | Anzeige Informationen bei Fehlerereignis: |           |         |
|        | ERR 1 ########                         | Fehlercode     Ausgangsfrequenz           |           |         |
| d082   | 2. Störung                             | Motorstrom                                | _         | _       |
|        | ERR 2 ########                         | Zwischenkreisspannung                     |           |         |
| d083   | 3. Störung                             | Betriebszeit     Notz Fin Zoit            | _         | _       |
|        | ERR 3 ########                         | Netz-Ein-Zeit                             |           |         |

## Umrichteranzeige bei Betrieb im Netzwerk

Der Umrichter L200 kann über die serielle Schnittstelle mit einem Netzwerk oder einer externen Bedieneinheit verbunden werden. Bei dieser Betriebsart sind die Tasten auf dem Umrichter außer Funktion (mit Ausnahme der Stop-Taste). Über die vierstellige Anzeige kann jedoch einer der Überwachungsparameter d001 - d007 angezeigt werden. Die Auswahl des Überwachungsparameters erfolgt mit der Einstellung in Parameter b089. Beziehen Sie sich dabei auf die untere Tabelle.


|      | b089 Anzeigenauswahl bei einem vernetzten Umrichter |                            |  |  |  |  |
|------|-----------------------------------------------------|----------------------------|--|--|--|--|
| Code | Code FktNr. Funktion                                |                            |  |  |  |  |
| 01   | d001                                                | Ausgangsfrequenz           |  |  |  |  |
| 02   | d002                                                | Motorstrom                 |  |  |  |  |
| 03   | d003                                                | Drehrichtung               |  |  |  |  |
| 04   | d004                                                | PID-Regler Istwert         |  |  |  |  |
| 05   | d005                                                | Status digitale Eingänge   |  |  |  |  |
| 06   | d006                                                | Status digitale Ausgänge   |  |  |  |  |
| 07   | d007                                                | Skalierte Ausgangsfrequenz |  |  |  |  |

Bei Überwachung des Umrichters während des Netzwerkbetriebs ist folgendes zu beachten:

- Der Umrichter zeigt eine Funktion d00x entsprechend der Einstellung von Parameter b089 an, wenn ...
  - der DIP-Schalter OPE/485 DIP auf Stellung "485" steht oder
  - beim Einschalten des Umrichters ein Gerät mit der seriellen Schnittstelle verbunden ist.
- Während des Betriebs im Netzwerk werden trotzdem auftretende Fehlermeldungen auf der Anzeige angezeigt. Die Stop-Taste oder die Reset-Funktion kann zum Löschen der Fehlermeldungen verwendet werden. Sehen Sie auch im Kapitel "Störmeldungen" auf Seite 6–6, um mehr Informationen über diese Fehlermeldungen zu bekommen.
- Die Stop-Taste kann mit Parameter b087 deaktiviert werden.

# Gruppe "F": Basisfunktionen

Das Grundfrequenzprofil (Geschwindigkeit) ist mit den entsprechenden Parametern der Gruppe "F" rechts dargestellt. Die eingestellte Frequenz ist in Hz angegeben, die Beschleunigung und Verzögerung werden als Laufzeit der Rampe beschrieben (0 bis max. Frequenz oder max. Frequenz bis 0) Der Parameter für die Drehrichtung gibt an, wenn über die Taste RUN gestartet wird. Dieser Parame-



ter beeinflusst jedoch nicht den digitalen Eingang für die Drehrichtung den Sie gesondert eingestellt haben.

Beschleunigung 1 und Verzögerung 1 sind die Standardwerte für das Hauptprofil. Weitere Beschleunigungs- bzw. Verzögerungswerte werden in den Parametern Ax92 bis Ax93 verwendet. Die Wahl der Drehrichtung (F004) erfolgt bei diesem Parameter ausschließlich über die Tastatur. Diese Einstellungen ermöglichen verschiedene Motorprofile (1. oder 2.) die zu bestimmten Zeiten gefahren werden können.

|        | "F" Funktionen                          |                                                                                  | einst.    | Grundwerte   |              |         |
|--------|-----------------------------------------|----------------------------------------------------------------------------------|-----------|--------------|--------------|---------|
| FktNr. | Funktion /<br>SRW Anzeige               | Beschreibung                                                                     | im<br>RUN | –FEF<br>(EU) | -FU<br>(USA) | Einheit |
| F001   | Anzeige / Eingabe<br>Frequenzsollwert   | Standard Frequenzsollwert-<br>vorgabe                                            | Ja        | 0,0          | 0,0          | Hz      |
|        | VR 0000,0Hz                             | 0,0 - 400 Hz                                                                     |           |              |              |         |
| F002   | 1. Hochlaufzeit                         | Standard Hochlaufzeit<br>0,01 - 3000 s                                           | Ja        | 10,0         | 10,0         | s       |
|        | ACC 1 010,00s                           |                                                                                  |           |              |              |         |
| F202   | 1. Hochlaufzeit<br>(2. Parametersatz)   | Standard Hochlaufzeit<br>(2. Parametersatz)<br>0,01 - 3000 s                     | Ja        | 10,0         | 10,0         | s       |
|        | 2ACC1 010,00s                           |                                                                                  |           |              |              |         |
| F003   | 1. Runterlaufzeit                       | Standard Runterlaufzeit                                                          | Ja        | 10,0         | 10,0         | s       |
|        | DEC 1 010,00s                           | 0,01 - 3000 s                                                                    |           |              |              |         |
| F203   | 1. Runterlaufzeit<br>(2. Parametersatz) | Standard Runterlaufzeit (2. Parametersatz)                                       | Ja        | 10,0         | 10,0         | s       |
|        | 2DEC1 010,00s                           | 0,01 - 3000 s                                                                    |           |              |              |         |
| F004   | Drehrichtung                            | 2 Einstellmöglichkeiten bei<br>Start/Stop über Taste RUN:<br>00Rechts<br>01Links | Nein      | 00           | 00           | _       |
|        | DIG-RUN FWD                             |                                                                                  |           |              |              |         |

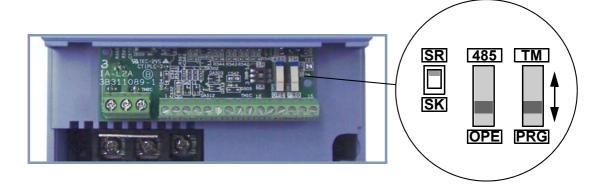
# Gruppe "A": Standardfunktionen

# Vorgabe Steuerungseinstellungen

Um den Motor zu starten/stoppen oder die Frequenz vorzugeben, bietet der Umrichter verschiedene Möglichkeiten (wenn DIP-Schalter auf "PRG" steht). In Parameter A001 wird die Art der Frequenzsollwertvorgabe festgelegt. In Parameter A002 wird die Art des Startbefehls bestimmt (für FW und RV gleich). Bei der Europa-Version ist der Start über Steuerklemmen (digitaler Eingang) die Grundeinstellung, während bei der USA-Version der Start über die Tastatur (RUN-Taste) erfolgt.

|        | "A" Funktionen                                                                                                                                         |                                                                                                               | Einst.    | Grundwerte   |              |         |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------|--------------|--------------|---------|
| FktNr. | Funktion /<br>SRW Anzeige                                                                                                                              | Beschreibung                                                                                                  | im<br>RUN | -FEF<br>(EU) | -FU<br>(USA) | Einheit |
| A001   | A001 Frequenzsollwert-vorgabe  F-COM VR  5 Wahlmöglichkeiten: 00eingeb. Potentiometer 01Eingang O/OI 02F001/A020 03RS485 (ModBus) 10Log. Verknüpfungen | Nein                                                                                                          | 01        | 00           | _            |         |
|        |                                                                                                                                                        | 02F001/A020<br>03RS485 (ModBus)                                                                               |           |              |              |         |
| A201   | Frequenzsollwert-<br>vorgabe<br>(2. Parametersatz)                                                                                                     | 5 Wahlmöglichkeiten: 00eingeb. Potentiometer 01Eingang O/OI 02F001/A020 03RS485 (ModBus) 10Log. Verknüpfungen | Nein      | 01           | 00           | _       |
|        | 2F-COM VR                                                                                                                                              |                                                                                                               |           |              |              |         |
| A002   | Start/Stop-Vorgabe                                                                                                                                     | 3 Wahlmöglichkeiten:                                                                                          | Nein      | 01           | 02           | _       |
|        | OPE-Mode REM                                                                                                                                           | 01Eingang FW/RV<br>02RUN-Taste<br>03RS485 (ModBus)                                                            |           |              |              |         |
| A202   | Start/Stop-Vorgabe (2. Parametersatz)                                                                                                                  | 3 Wahlmöglichkeiten:<br>01Eingang FW/RV                                                                       | Nein      | 01           | 02           | _       |
|        | 2OPE-Mode REM                                                                                                                                          | 02RUN-Taste<br>03RS485 (ModBus)                                                                               |           |              |              |         |

**Frequenzsollwertvorgabe** - Für Parameter A001 gibt die folgende Tabelle eine genauere Beschreibung der einzelnen Einstellungsmöglichkeiten. Für weitere Informationen beziehen Sie sich auf den Kapitelhinweis in der rechten Spalte.


| Code | Frequenzvorgabe                                                                                                                       | weitere Infos    |
|------|---------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 00   | Eingebautes Potentiometer - Der Bereich des Potentiometers entspricht dem Bereich aus b082 (Startfrequenz) bis A004 (Maximalfrequenz) | 2–26             |
| 01   | Eingang O/OI - Aktiver Analogeingang der Steuer-<br>klemmen [O] oder [OI] zum Einstellen der Ausgangs-<br>frequenz                    | 4–51, 3–14, 3–60 |
| 02   | Einstellung über F001 - Der Wert wird in F001 zur Verwendung der Ausgangsfrequenz eingetragen                                         | 3–9              |

| Code | Frequenzvorgabe                                                                                                                                                                                      | weitere Infos |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 03   | ModBus-Netzwerk (RS485) - Das Netzwerk hat für die Ausgangsfrequenz ein bestimmtes Register                                                                                                          | B-20          |
| 10   | Logische Verknüpfungen - Anwenderspezifische<br>Analogeingänge (A und B) dienen als logische<br>Verknüpfungen. Der Ausgang kann die Summe, Diffe-<br>renz oder Produkt dieser beiden Variablen sein. | 3–31          |

**Start/Stop-Vorgabe** - Für Parameter A002 gibt die folgende Tabelle eine genauere Beschreibung der einzelnen Einstellungsmöglichkeiten. Für weitere Informationen beziehen Sie sich auf den Kapitelhinweis in der rechten Spalte.

| Code | Start/Stop-Vorgabe                                                                                                       | weitere Infos |
|------|--------------------------------------------------------------------------------------------------------------------------|---------------|
| 01   | Eingang FW/RV - Die Steuerklemmen [FW] oder [RV] steuern den Start/Stop-Betrieb                                          | 4–12, 3–51    |
| 02   | Start/Stop über Bedienfeld                                                                                               | 2–26          |
| 03   | ModBus-Netzwerk (RS485) - Das Netzwerk hat sowohl für den Start/Stop- wie auch für den FW/RV-Befehl ein bestimmtes Coil. | B-20          |

Korrekturmöglichkeiten A001/A002 - Die hier beschriebenen Einstellungen für A001/A002 gelten nur für den Fall, dass der DIP-Schalter "TM/PRG" (auf I/O-Platine neben den Steuerklemmen) auf "PRG" steht. Steht der DIP-Schalter auf "TM" so erfolgt die Steuerung des FU's über die Klemmenleiste, unabhängig der Einstellung unter A001 bzw. A002.



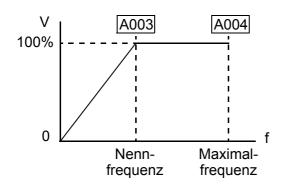
Die Einstellungen für den Schalter TM/PRG sind entsprechend der Tabelle unten dargestellt.

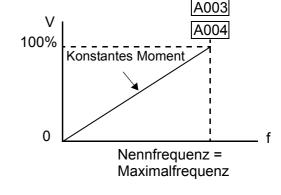
| TM/PRG<br>Schalterstellung | Begriff                 | Funktion                         |
|----------------------------|-------------------------|----------------------------------|
| PRG (Programmierung)       | Frequenzsollwertvorgabe | Einstellung durch A001           |
| (Frogrammerung)            | Start/Stop-Vorgabe      | Einstellung durch A002           |
|                            | Frequenzsollwertvorgabe | Analogeingang [O] oder [OI]      |
| TM (Steuerklemmen)         | Start/Stop-Vorgabe      | Steuerklemmen [FW] und/oder [RV] |

Bei Einstellung A001 = 01 und A002 = 01 wird der Umrichter über die Steuerklemmen angesprochen, ungeachtet der Schalterstellung von TM/PRG. Wenn die Einstellung von A001 und A002 nicht 01 ist, entscheidet die Schalterstellung TM/PRG über die Steuerungsart.

Der Umrichter hat weitere Steuerungsmöglichkeiten, um den Parameter A001 zu überschreiben und Einfluss auf die Ausgangsfrequenz zu nehmen. Die Tabelle unten zeigt alle Arten der Einstellungen und deren Prioritäten ("1" hat die höchste Priorität).

| Priorität | A001 Art der Frequenzvorgabe                           | weitere Infos |
|-----------|--------------------------------------------------------|---------------|
| 1         | [CF1] bis [CF4] Festfrequenzen                         | 4–13          |
| 2         | [OPE] Externe Bedieneinheit                            | 4–31          |
| 3         | [F-TM] Digitale Eingänge                               | 4–33          |
| 4         | [AT] Analoger Sollwert                                 | 4–23          |
| 5         | TM/PRG DIP-Schalter - (wenn Schalter in Stellung "TM") | 3–11          |
| 6         | A001 Frequenzvorgabe                                   | 3–10          |


Der Umrichter hat weitere Steuerungsmöglichkeiten, um den Parameter A002 zu überschreiben und Einfluss auf den Start/Stop-Befehl zu nehmen. Die Tabelle unten zeigt alle Arten der Einstellungen und deren Prioritäten ("1" hat die höchste Priorität).


| Priorität | A002 Art des Start/Stop-Befehls                        | weitere Infos |
|-----------|--------------------------------------------------------|---------------|
| 1         | [OPE] Externe Bedieneinheit                            | 4–31          |
| 2         | [F-TM] Digitale Eingänge                               | 4–33          |
| 3         | TM/PRG DIP-Schalter - (wenn Schalter in Stellung "TM") | 3–11          |
| 4         | A002 Start/Stop-Vorgabe                                | 3–10          |

## Einstellungen Grundparameter

Unter Funktion A003 kann die Frequenz, bei der die Ausgangsspannung ihren maximalen Wert annimmt, in einem Bereich von 50 - 400 Hz eingestellt werden. Im Regelfall wird hier die Nennfrequenz des Motors eingestellt. Die Angaben über die Nennfrequenz sind dem Typenschild des Motors zu entnehmen.

Soll sich jenseits der Eckfrequenz (Nennspannung des Motors) ein Frequenzbereich mit konstanter Spannung anschließen (Feldschwächbereich), so wird dieser durch die unter A004 eingegebene Frequenz (Endfrequenz) festgelegt. Die Eckfrequenz kann nicht größer als die Endfrequenz gewählt werden.







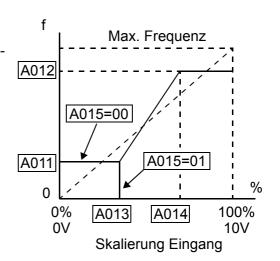
**HINWEIS:** Durch den "2. Parametersatz", in der unteren Tabelle dieses Kapitels, sind Einstellungen für einen 2. Motor möglich. Der Umrichter kann die Ausgangsfrequenz für beide Parametersätze ausgeben. Siehe auch "Konfiguration für Mehrmotorenbetrieb" auf Seite 4–57.

|            | "A" Funktionen                                          |                                            | Einst.    | Grundwerte   |              |         |
|------------|---------------------------------------------------------|--------------------------------------------|-----------|--------------|--------------|---------|
| Fkt<br>Nr. | Name /<br>SRW Anzeige                                   | Beschreibung                               | im<br>RUN | -FEF<br>(EU) | -FU<br>(USA) | Einheit |
| A003       | Motornennfrequenz/<br>Eckfrequenz                       | Einstellbar von 30 Hz bis<br>Max. Frequenz | Nein      | 50,0         | 60,0         | Hz      |
|            | F-BASE 00050Hz                                          |                                            |           |              |              |         |
| A203       | Motornennfrequenz/<br>Eckfrequenz<br>(2. Parametersatz) | Einstellbar von 30 Hz bis<br>max. Frequenz | Nein      | 50,0         | 60,0         | Hz      |
|            | 2F-BASE 00050Hz                                         |                                            |           |              |              |         |
| A004       | Maximalfrequenz                                         | Einstellbar von Nennfre-                   | Nein      | 50,0         | 60,0         | Hz      |
|            | F-MAX 00050Hz                                           | quenz bis 400 Hz                           |           |              |              |         |
| A204       | Maximalfrequenz<br>(2. Parametersatz)                   |                                            | Nein      | 50,0         | 60,0         | Hz      |
|            | 2F-MAX 00050Hz                                          |                                            |           |              |              |         |

# **Einstellung Sollwertanpassung Analog-Eingang O, OI und internes Potentiometer**

Die Ausgangsfrequenz des Umrichters kann durch ein externes analoges Eingangssignal geregelt werden. Dabei können Spannungs- (0-10V) oder Stromsignale (0-20mA) an separaten Steuerklemmen ([O] und [OI]) verwendet werden. Die Klemme [L] dient als Bezugspotential der beiden Analogeingänge. Die Einstellungen der Analogeingänge bestimmen die Kennlinie zwischen Analogeingang und Frequenzausgang.

#### Analoge Sollwertanpassung [O-L]


Eine individuelle Anpassung des externen Sollwertes kann unter folgenden Funktionen vorgenommen werden. Ein frei wählbarer Sollwertbereich, kann einem beliebigen Frequenzbereich zugeordnet werden. Außerdem läßt sich die Samplingrate für den analogen Sollwerteingang einstellen.

Beispiel: A011 15 Hz

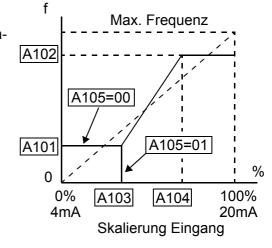
A012 45 Hz

A013 20 % (2V)

A014 70 % (7V)



#### Analoge Sollwertanpassung [OI-L]


Eine individuelle Anpassung des externen Sollwertes kann unter folgenden Funktionen vorgenommen werden. Ein frei wählbarer Sollwertbereich kann einem beliebigen Frequenzbereich zugeordnet werden. Außerdem läßt sich die Samplingrate des analogen Sollwerteingang einstellen.

Beispiel: A101 15 Hz

A102 45 Hz

A103 20 % (4mA)

A104 70 % (14mA)

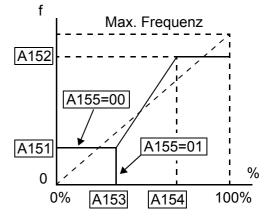




**HINWEIS:** Bei der Serie  $L200_2$  gelten die Parameter A011 - A015 nur für den Analogeingang O-L und die Parameter A151 - A155 für das interne Potentiometer. Bei der Serie L200 galten diese Parameter für den Analogeingang O-L **UND** das interne Potentiometer

#### **Analoge Sollwertanpassung [internes Potentiometer]**

Eine individuelle Anpassung des externen Sollwertes kann unter folgenden Funktionen vorgenommen werden. Ein frei wählbarer Sollwertbereich kann einem beliebigen Frequenzbereich zugeordnet werden. Außerdem läßt sich die Samplingrate des analogen Sollwerteingang einstellen.


Beispiel: A151 15 Hz
A152 45 Hz

A153 20 % (10Hz)

A154 70 % (35Hz)

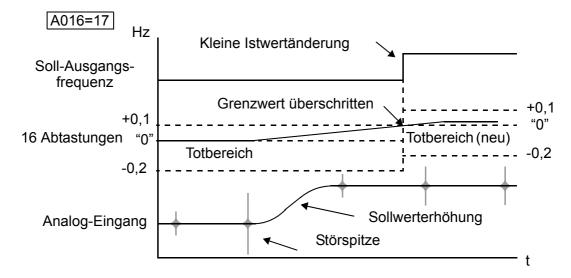
#### Sollwertinvertierung:

Bei speziellen Anwendungen ist es erforderlich bei minimalem Sollwert (z. B. 0V/4mA/0Hz) die maximale Frequenz bzw. bei maximalem Sollwert (z. B. 10V/20mA/400Hz) die minimale Frequenz zu fahren. Hierzu ist unter A011/A101/A151 die max.



Skalierung Eingang

Frequenz und unter A012/A102/A152 die min. Frequenz einzugeben.


Achtung! Unter diesen Umständen liegt keine Drahtbruchsicherheit vor (A015/A105/A155)!

| "A" Funktionen |                                                   |                                                                                                                                                                 | Einst.    | Grundwerte   |              |                     |
|----------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|--------------|---------------------|
| Fkt<br>Nr.     | Name /<br>SRW Anzeige                             | Beschreibung                                                                                                                                                    | im<br>RUN | –FEF<br>(EU) | -FU<br>(USA) | Einheit             |
| A005           | Umschaltung<br>Sollwerteingänge mit<br>Eingang AT | 4 Wahlmöglichkeiten: 1 00 [O] und [OI] 1 01 [O] und [OI] ([AT] Eingang unberücksichtigt) 1 02 [O] und eingeb. Potentiometer 1 03 [OI] und eingeb. Potentiometer | Nein      | 00           | 00           | Hz                  |
|                | AT-Slct O/OI                                      |                                                                                                                                                                 |           |              |              |                     |
| A011           | [O]-[L] Frequenz bei<br>Min Sollwert              | Unterschreitung min. Sollwert,<br>Verwendung min. Frequenz<br>0,0 - 400,0 Hz                                                                                    | Nein      | 0,0          | 0,0          | Hz                  |
| A012           | O-EXS 0000,0Hz [O]-[L] Frequenz bei MaxSollwert   | Überschreitung max. Sollwert,<br>Verwendung max. Frequenz                                                                                                       | Nein      | 0,0          | 0,0          | Hz                  |
|                | O-EXE 0000,0Hz                                    | 0,0 - 400,0 Hz                                                                                                                                                  |           |              |              |                     |
| A013           | [O]-[L]<br>MinSollwert                            | Eingegebener Wert bezieht<br>sich auf min. möglichen<br>Sollwert<br>0 - 100 %                                                                                   | Nein      | 0            | 0            | %                   |
|                | O-EX%S 00000%                                     |                                                                                                                                                                 |           |              |              |                     |
| A014           | [O]-[L]<br>MaxSollwert                            | Eingegebener Wert bezieht<br>sich auf max. möglichen<br>Sollwert<br>0 - 100 %                                                                                   | Nein      | 100          | 100          | %                   |
|                | O-EX%E 00100%                                     |                                                                                                                                                                 |           |              |              |                     |
| A015           | [O]-[L]<br>Startbedingung                         | 2 Wahlmöglichkeiten:<br>00 min. Frequenz (A011)<br>01 0 Hz                                                                                                      | Nein      | 01           | 01           | _                   |
|                | O-LVL 0Hz                                         |                                                                                                                                                                 |           |              |              |                     |
| A016           | Filter Analogeingang                              | Einstellbereich plus eine<br>Einstellung:<br>01 - 16 Reaktionszeit<br>(n = 1-16 Abtastungen)<br>17 16 Abtastungen, plus<br>Totbereich +0,1/-0,2Hz               | Nein      | 2            | 8            | 1<br>Abtas-<br>tung |
|                | F-SAMP 00008                                      |                                                                                                                                                                 |           |              |              |                     |

**Filter Analog-Eingang -** Der eingegebene Wert gibt die Anzahl der Abtastungen vor, die zur Mittelwertbildung erforderlich sind. Je größer der Wert ist, um so unempfindlicher ist der Analog-Eingang gegenüber Störsignalen. Die Reaktionszeit ist dabei jedoch auch langsamer.

A016 = 17 ist eine besondere Einstellung. Der Umrichter hat dabei die Funktion eines beweglichen Totbereichs. Zunächst bildet der Umrichter den Mittelwert aus den einstellbaren 16 Abtastungen. Die Arbeitsweise des Grenzbereichs wird durch Nichtbeachtung kleinerer Schwankungen, im Bereich von +0,1 bis -0,2 Hz, realisiert. Werden die durchschnittlichen 16fachen Abtastungen in diesem Totbereich überschritten, verwendet der Umrichter diesen Mittelwert als Soll-Ausgangsfrequenz und es wird ein neuer Vergleichswert des Totbereichs für spätere Mittelwertberechnungen gebildet.

Die untere Beispieldarstellung zeigt einen typischen Kurvenverlauf des Analog-Eingangs. Der Filter blendet die Störsignale aus. Bei einer Geschwindigkeitsänderung (Sollwerterhöhung) hat der Filter natürlich ein verzögertes Ansprechverhalten. Aufgrund der Eigenschaft des Totbereichs (A016=17) wird die endgültige Ausgangsgröße nur dann verändert, wenn die durchschnittlichen 16fachen Abtastungen den Grenzwert des Totbereichs durchlaufen.





**TIPP:** Die Eigenschaft des Totbereichs ist bei Anwendungen nützlich, die eine sehr stabile Ausgangsfrequenz benötigen und als Sollwertvorgabe einen Analog-Eingang verwenden.

Beispiel: Eine Schleifmaschine verwendet ein externes Potentiometer als Sollwerteingang. Nach Einstellungsänderungen muss die Schleifmaschine eine sehr exakte Geschwindigkeit liefern, um eine gleichmäßige Oberfläche zu bekommen.

# Festfrequenzen und Tipp-Betrieb

Die hier programmierten 15 Festfrequenzen werden über die Eingänge CF1 - CF4 abgerufen. Alternativ lassen sich die Festfrequenzen direkt unter F001 eingeben, wenn die entsprechenden Eingänge CF1 - CF4 angewählt werden (siehe Funktion C001 - C006, Eingabe 02 - 05).

Die Festfrequenzen besitzen Priorität gegenüber allen anderen Sollwerten. Sie werden lediglich vom Tipp-Betrieb übertroffen, der die höchste Priorität besitzt.

Der Tipp-Betrieb wird über Eingang JG aktiviert und dient z. B. zum Einrichten einer Maschine im Hand-Betrieb. Da im Tipp-Betrieb die Hochlauframpe nicht aktiv ist, könnte es - wenn die Tippfrequenz zu groß gewählt wird - zur Auslösung einer Störmeldung (Überstrom) kommen (siehe Funktion C001 - C006, Eingabe 06). Der Tipp-Betrieb ist nicht möglich, wenn die eingestellte Tipp-Frequenz kleiner ist als die unter Funktion b082 eingegebene Start-Frequenz.

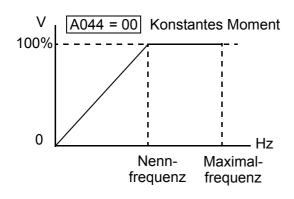
| "A" Funktionen      |                                                                                                                                                                                                                                                                                                              |                                                                                                                                  | Einst.    | Grundwerte                                                         |                                                                    |         |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------|--------------------------------------------------------------------|---------|
| Fkt<br>Nr.          | Name /<br>SRW Anzeige                                                                                                                                                                                                                                                                                        | Beschreibung                                                                                                                     | im<br>RUN | -FEF<br>(EU)                                                       | -FU<br>(USA)                                                       | Einheit |
| A020                | Basisfrequenz                                                                                                                                                                                                                                                                                                | Frequenzsollwert wenn<br>keine Festfrequenz über<br>Eingänge angewählt ist und<br>A001=02<br>0,0-400,0 Hz                        | Ja        | 0,0                                                                | 0,0                                                                | Hz      |
|                     | SPD 00s 0000,0Hz                                                                                                                                                                                                                                                                                             |                                                                                                                                  |           |                                                                    |                                                                    |         |
| A220                | Basisfrequenz<br>(2. Parametersatz)                                                                                                                                                                                                                                                                          | Frequenzsollwert wenn<br>keine Festfrequenz über<br>Eingänge angewählt ist<br>und A001=02<br>(2. Parametersatz)<br>0,0-400,0 Hz. | Ja        | 0,0                                                                | 0,0                                                                | Hz      |
|                     | 2SPD00s 0000,0Hz                                                                                                                                                                                                                                                                                             |                                                                                                                                  |           |                                                                    |                                                                    |         |
| A021<br>bis<br>A035 | Festfrequenzen 1 -15 (für beide Parametersätze)                                                                                                                                                                                                                                                              | 15 Festfrequenzen<br>0,0 - 400 Hz<br>A021= Festfrequenz 1<br>A035 = Festfrequenz 15                                              | Ja        | n.<br>Zeile                                                        | n.<br>Zeile                                                        | Hz      |
|                     | SPD 01s 000,0Hz<br>SPD 02s 000,0Hz<br>SPD 03s 000,0Hz<br>SPD 04s 000,0Hz<br>SPD 05s 000,0Hz<br>SPD 06s 000,0Hz<br>SPD 07s 000,0Hz<br>SPD 08s 000,0Hz<br>SPD 09s 000,0Hz<br>SPD 10s 000,0Hz<br>SPD 11s 000,0Hz<br>SPD 12s 000,0Hz<br>SPD 13s 000,0Hz<br>SPD 14s 000,0Hz<br>SPD 14s 000,0Hz<br>SPD 15s 000,0Hz | A021<br>A022<br>A023<br>A024<br>A025<br>A026<br>A027<br>A028<br>A029<br>A030<br>A031<br>A032<br>A033<br>A034<br>A035             |           | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 |         |
| A038                | Tipp-Frequenz Jog-F 001,00Hz                                                                                                                                                                                                                                                                                 | Frequenzeinstellung<br>Tipp-Betrieb<br>0,0 - 9,99 Hz                                                                             | Ja        | 1,00                                                               | 1,00                                                               | Hz      |
| A039                | Tipp-Frequenz<br>Stopp-Modus<br>Jog-Mode FRS                                                                                                                                                                                                                                                                 | Beendigung Tipp-Betrieb:<br>00Freilauf<br>01Rampe<br>02DC-Bremse                                                                 | Nein      | 00                                                                 | 00                                                                 | _       |

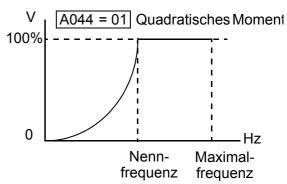


**HINWEIS:** Wenn Parameter A039 = 01, entspricht die Runterlauframpe im Tipp-Betrieb der eingestellten Zeit unter Parameter F002/F003.

#### **Arbeitsverfahren**

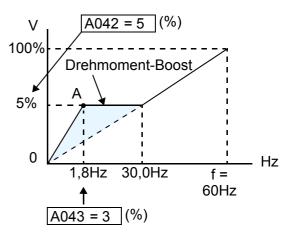
Der Umrichter arbeitet nach dem Arbeitsverfahren U/f. Die Einstellung erfolgt, wie rechts dargestellt, mit Parameter A044 (A244 bei 2. Parametersatz). Die Werkseinstellung ist 00 (konstantes Drehmoment).


Prüfung folgender Punkte für die Auswahl des Arbeitsverfahrens.


 Die vorhandenen U/f-Kennlinien entwickeln eine konstante oder quadratische Drehmomenten-Charakteristik (siehe Darstellung unten). Es kann zwischen einer konstanten oder quadratischen U/f-Kennlinie gewählt werden.

# Frequenzregelung, konstant A044 Ausgang Frequenzregelung, quadratisch

Arbeitsverfahren


Konstantes und quadratisches Moment – Die untere linke Zeichnung zeigt eine konstante Momentenkennlinie (0 Hz bis Nennfrequenz A003). Die Spannung bleibt konstant, wenn die Ausgangsfrequenz über der Nennfrequenz liegt. Die untere rechte Zeichnung zeigt eine quadratische Momentenkennlinie. Der Bereich von 0 Hz bis zur Nennfrequenz hat einen quadratischen Verlauf.

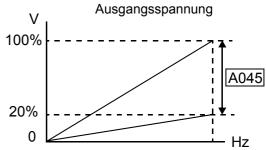




#### **Manueller Drehmoment-Boost**

Das konstante und quadratische Drehmomenten-Arbeitsverfahren ist eine einstellbare *Drehmomenten-Boost-Kennlinie*. Bei großen Massenträgheitsmomenten oder Haftreibung ist es bei niedrigen Frequenzen notwendig, die Spannung über den normalen U/f-Anteil, wie rechts dargestellt anzuheben. Dabei wird versucht den Spannungsabfall in den Motorwicklungen bei niedrigen Drehzahlen zu kompensieren. Die Spannungsanhebung ist bis zur Hälfte der Nennfrequenz einstellbar. Die Spannungsanhebung wird unter A042,




und der Frequenzwert wird unter A043 (Punkt "A") eingegeben. Die Eingabe erfolgt in Prozentwerten. Der manuelle Boost ist eine ermittelte Addition zur U/f-Kennlinie.

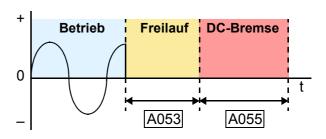
Motorbetrieb mit niedrigen Geschwindigkeiten für einen längeren Zeitraum kann die Ursache für Überhitzung sein. Dies ist besonders bei eingeschaltetem Boost der Fall oder es wird sich auf den eingebauten Lüfter zu Kühlungszwecken verlassen.



**HINWEIS:** Manueller Boost wird nur bei U/f-Kennlinien angewendet (A044=0; A044=01).

**Ausgangsspannung –** Die Ausgangsspannung kann im Bereich von 20 - 100% der Eingangsspannung eingestellt werden. Die entsprechenden Motordaten sollten dabei berücksichtigt werden.




Die Tabelle zeigt die Vorgehensweise zur Einstellung der Drehmomentregelung.

|            | "A" Funktionen                                                 |                                                                                                             | Einst.    | Grundwerte   |              |         |
|------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------|--------------|--------------|---------|
| Fkt<br>Nr. | Name /<br>SRW Anzeige                                          | Beschreibung                                                                                                | im<br>RUN | -FEF<br>(EU) | -FU<br>(USA) | Einheit |
| A041       | Boost-Charakteristik                                           | 2 Wahlmöglichkeiten:<br>00 Manueller Boost<br>01 Automatischer Boost                                        | Ja        | 00           | 00           | %       |
| -          | V-Bst Slct MN                                                  |                                                                                                             |           |              |              |         |
|            | Boost-Charakteris-<br>tik<br>(2. Parametersatz)                | 2 Wahlmöglichkeiten:<br>00 Manueller Boost<br>01 Automatischer Boost                                        | Ja        | 00           | 00           | %       |
|            | 2VBst Slct MN                                                  |                                                                                                             |           |              |              |         |
| A042       | Manueller Boost                                                | Erhöhung Startmoment bei U/f-<br>Kurve (A044 = 00)<br>0,0 - 20,0%                                           | Ja        | 5,0          | 5,0          | %       |
| -          | V-Bst V 0001.8%                                                |                                                                                                             |           |              |              |         |
|            | Manueller Boost<br>(2. Parametersatz)                          | Erhöhung Startmoment bei U/f-<br>Kurve (A044 = 00)<br>0,0 - 20,0%                                           | Ja        | 0,0          | 0,0          | %       |
| [          | 2VBst V 0000.0%                                                |                                                                                                             |           |              |              |         |
|            | Maximaler Boost bei<br>%Eckfrequenz                            | Frequenz mit höchster Spannungs-<br>anhebung. Eingabebereich von<br>0-50% der Eckfrequenz<br>0,0 - 50,0%    | Ja        | 10,0         | 10,0         | %       |
| -          | M-Bst F 0010.0%                                                |                                                                                                             |           |              |              |         |
|            | Maximaler Boost<br>bei %Eckfrequenz<br>(2. Parametersatz)      | Frequenz mit höchster<br>Spannungsanhebung. Eingabe-<br>bereich von<br>0-50% der Eckfrequenz<br>0,0 - 50,0% | Ja        | 0,0          | 0,0          | %       |
|            | 2MBst F 0000.0%                                                |                                                                                                             |           |              |              |         |
|            | Arbeitsverfahren /<br>V/f-Charakteristik                       | 00 U/f konstant<br>01 U/f quadratisch                                                                       | Nein      | 00           | 00           | _       |
|            | CTRL I-SLV                                                     |                                                                                                             |           |              |              |         |
|            | Arbeitsverfahren /<br>V/f-Charakteristik<br>(2. Parametersatz) | 00 U/f konstant<br>01 U/f quadratisch                                                                       | Nein      | 00           | 00           | _       |
|            | 2CTRL I-SLV                                                    |                                                                                                             |           |              |              |         |

|            | "A" Funktionen        |                                                 |           |              | Grundwerte   |         |  |
|------------|-----------------------|-------------------------------------------------|-----------|--------------|--------------|---------|--|
| Fkt<br>Nr. | Name /<br>SRW Anzeige | Beschreibung                                    | im<br>RUN | -FEF<br>(EU) | -FU<br>(USA) | Einheit |  |
| A045       | Ausgangsspannung      | Einstellbare Ausgangsspannung                   | Ja        | 100          | 100          | %       |  |
|            | V-Gain 00100%         | 20 - 100%                                       |           |              |              |         |  |
| A245       | Ausgangsspan-<br>nung | Einstellbare Ausgangsspan-<br>nung<br>20 - 100% | Ja        | 100          | 100          | %       |  |
|            | 2V-Gain 00100%        |                                                 |           |              |              |         |  |

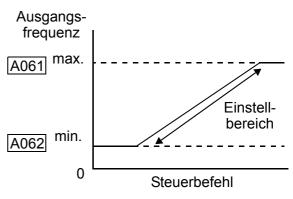
### **Einstellungen Gleichstrombremse (DC-Bremse)**

Die Frequenzumrichter L200 verfügen über eine einstellbare Gleichstrombremse. Durch das Aufschalten einer mit 1kHz getakteten Gleichspannung auf den Ständer des Motors erzeugt der Läufer ein Bremsmoment, das der Rotation entgegenwirkt. Mit Hilfe der Gleichstrombremse können hohe Stoppgenauigkeiten bei Positionieran-



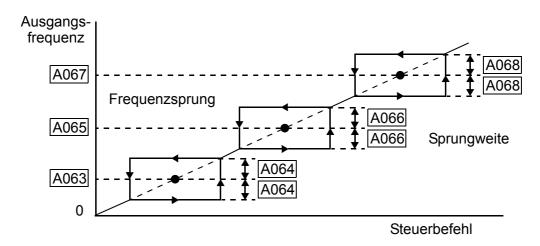
trieben realisiert werden. Außerdem kann durch die Gleichstrombremse die Drehzahl vor dem Einfallen einer mechanischen Bremse auf ein Minimum reduziert werden. Die Gleichstrombremse wird bei der hier eingestellten Frequenz (A052) aktiv, wenn ein Stop-Befehl anliegt. Das Bremsmoment (A054), die Bremszeit (A055) und die Wartezeit (A053) können getrennt eingestellt werden.




**ACHTUNG:** Vermeidung von langen DC-Bremszeiten. Dies kann zur zusätzlichen Erwärmung des Motors führen. Bei Verwendung einer Gleichstrombremse wird zum Anschluss eines Thermistors geraten. Beziehen Sie sich auf die Angaben des Motorenherstellers über die erlaubte Bremszeit (Siehe auch "Thermistorschutz (Kaltleiterschutz)" auf Seite 4–25).

|        | "A" Funktionen                   |                                                                                                 |           | Grundwerte   |              |         |
|--------|----------------------------------|-------------------------------------------------------------------------------------------------|-----------|--------------|--------------|---------|
| FktNr. | Name /<br>SRW Anzeige            | Beschreibung                                                                                    | im<br>RUN | -FEF<br>(EU) | -FU<br>(USA) | Einheit |
| A051   | Aktivierung<br>DC-Bremse         | 2 Wahlmöglichkeiten:<br>00inaktiv                                                               | Nein      | 00           | 00           | _       |
|        | DCB Mode OFF                     | 01aktiv                                                                                         |           |              |              |         |
| A052   | DC-Bremse /<br>Einschaltfrequenz | Frequenz, bei der im Runterlauf die Bremse einfällt. Bereich von Startfrequenz (b082) bis 60 Hz | Nein      | 0,5          | 0,5          | Hz      |
| ۸053   | DCB F 0000,5Hz                   |                                                                                                 |           |              |              |         |
| A053   | Wartezeit Rampenführung b        | Verzögerung von Ende<br>Rampenführung bis Beginn                                                | Nein      | 0,0          | 0,0          | sek     |
|        | DCB Wait 0000,0s                 | der DC-Bremse (freier<br>Motorlauf bis Bremsbeginn)<br>0,0 - 5,0 s                              |           |              |              |         |
| A054   | DC-Bremse /<br>Bremsmoment       | Bremsmoment<br>0 - 100%                                                                         | Nein      | 0            | 0            | %       |
|        | DCB V 00000%                     |                                                                                                 |           |              |              |         |
| A055   | DC-Bremse /<br>Bremszeit         | Dauer DC-Bremse<br>0,0 - 60,0 s                                                                 | Nein      | 0,0          | 0,0          | sek     |
|        | DCB T 0000,0s                    | -                                                                                               |           |              |              |         |
| A056   | DC-Bremse /<br>Charakteristik    | 2 Wahlmöglichkeiten:<br>00Flanke                                                                | Nein      | 01           | 01           | _       |
|        | DCB KIND LEVEL                   | 01Pegel                                                                                         |           |              |              |         |

## **Anverwandte Frequenzfunktionen**


#### Betriebsfrequenzbereich - Der

Frequenzbereich, der durch die unter den Funktionen b082 (Startfrequenz) und A004 (Endfrequenz) programmierten Werte festgelegt ist, kann mit den Funktionen A061 und A062 eingeschränkt werden. Sobald der Frequenzumrichter einen Startbefehl erhält, fährt er auf die unter A062 programmierte Frequenz. Die Einstellung der Maximalfrequenz (A004/A204) hat Priorität gegenüber der Einstellung der minimalen Betriebsfrequenz (A061/A261).



|        | "A" Funk                                                       | tionen                                                                                                                                                                                     | Einst.    | Grundwerte   |              |         |  |
|--------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|--------------|---------|--|
| FktNr. | Name /<br>SRW Anzeige                                          | Beschreibung                                                                                                                                                                               | im<br>RUN | -FEF<br>(EU) | -FU<br>(USA) | Einheit |  |
| A061   | Max. Betriebsfrequenz Lim H 0000,0Hz                           | Begrenzung Ausgangs-<br>frequenz unterhalb der<br>Maximalfrequenz (A004).<br>Bereich von min. Betriebs-<br>frequenz (A062) bis<br>Maximalfrequenz (A004).<br>Grenze unwirksam bei<br>0 Hz. | Nein      | 0,0          | 0,0          | Hz      |  |
| A261   | Max. Betriebsfrequenz (2. Parametersatz)  2Lim H 0000,0Hz      | Begrenzung Ausgangs-<br>frequenz unterhalb der<br>Maximalfrequenz (A004).<br>Bereich von min.<br>Betriebsfrequenz (A062)<br>bis Maximalfrequenz<br>(A004). Grenze unwirk-<br>sam bei 0 Hz. | Nein      | 0,0          | 0,0          | Hz      |  |
| A062   | Min. Betriebsfrequenz Lim L 0000,0Hz                           | Begrenzung Ausgangs-<br>frequenz > 0. Bereich von<br>Startfrequenz (b082) bis<br>max. Betriebsfrequenz<br>(A061). Grenze unwirksam<br>bei 0 Hz.                                            | Nein      | 0,0          | 0,0          | Hz      |  |
| A262   | Min. Betriebsfrequenz<br>(2. Parametersatz)<br>2Lim L 0000,0Hz | Begrenzung Ausgangs-<br>frequenz > 0. Bereich von<br>Startfrequenz (b082) bis<br>max. Betriebsfrequenz<br>(A061). Grenze unwirk-<br>sam bei 0 Hz.                                          | Nein      | 0,0          | 0,0          | Hz      |  |

**Frequenzsprung** – Zur Vermeidung von eventuell auftretenden Resonanzen im Antriebssystem besteht die Möglichkeit unter den Funktionen A063 - A068 drei *Frequenzsprünge* zu programmieren.



|        | "A" Funktionen                     |                                                                                |           | Grundwerte   |              |         |
|--------|------------------------------------|--------------------------------------------------------------------------------|-----------|--------------|--------------|---------|
| FktNr. | Name /<br>SRW Anzeige              | Beschreibung                                                                   | im<br>RUN | -FEF<br>(EU) | -FU<br>(USA) | Einheit |
| A063   | Frequenzsprung 1  JUMP F1 0000,0Hz | Programmierung von 3<br>Frequenzsprüngen, zur<br>Ausblendung von<br>Resonanzen | Nein      | 0,0          | 0,0          | Hz      |
|        |                                    | 0,0 - 400,0 Hz                                                                 |           |              |              |         |
| A064   | Sprungweite der Frequenzsprünge    | der Frequenzsprünge                                                            | Nein      | 0,5          | 0,5          | Hz      |
|        | JUMP W1 0000,5Hz                   | 0,0 - 10,0 HZ                                                                  |           |              |              |         |
| A065   | Frequenzsprung 2                   | Frequenzsprüngen zur                                                           | Nein      | 0,0          | 0,0          | Hz      |
|        | JUMP F2 0000,0Hz                   |                                                                                |           |              |              |         |
| A066   | Frequenzsprung 2 /<br>Sprungweite  | Bestimmung Sprungweite der Frequenzsprünge                                     | Nein      | 0,5          | 0,5          | Hz      |
|        | JUMP W2 0000,5Hz                   | 0,0 - 10,0 Hz                                                                  |           |              |              |         |
| A067   | Frequenzsprung 3                   | Programmierung von 3                                                           | Nein      | 0,0          | 0,0          | Hz      |
|        | JUMP F3 0000,0Hz                   | Frequenzsprüngen, zur<br>Ausblendung von<br>Resonanzen<br>0,0 - 400,0 Hz       |           |              |              |         |
| A068   | Frequenzsprung 3 /<br>Sprungweite  | Bestimmung Sprungweite der Frequenzsprünge                                     | Nein      | 0,5          | 0,5          | Hz      |
|        | JUMP W3 0000,5Hz                   | 0,0 - 10,0 Hz                                                                  |           |              |              |         |

### **PID-Regler**

Der integrierte PID-Regler berechnet den idealen Ausgangswert, um einen rückgeführten Istwert (Prozessvariable / PV) an einen vorgegebenen Sollwert (SW) anzupassen. Der Steuerbefehl (A001) ist der Sollwert. Der PID-Regler-Algorithmus benötigt die Analogeingänge als Prozessvariable und berechnet damit den Reglerausgang (Frequenz). Bestimmung des Strom- oder Spannungseingangs als Prozessvariable (Istwert), entsprechend ist der andere der Sollwerteingang.

- Durch einen Skalierungsfaktor (A075), der mit der Prozessvariablen multipliziert wird, kann die Prozessgröße in eine technische Einheit umgewandelt werden.
- Proportional-, Integral- und Differential-Verstärkung sind einstellbar.
- Sehen Sie "PID-Regler" auf Seite 4–54 für weitere Informationen.

|        | "A" Funk                           | tionen                                                                                       | Einst.    | G            | rundwe       | erte    |
|--------|------------------------------------|----------------------------------------------------------------------------------------------|-----------|--------------|--------------|---------|
| FktNr. | Name /<br>SRW Anzeige              | Beschreibung                                                                                 | im<br>RUN | -FEF<br>(EU) | -FU<br>(USA) | Einheit |
| A071   | Aktivierung<br>PID-Regler          | Aktivierung PID-Funktionen:<br>00PID-Regler inaktiv<br>01PID-Regler aktiv                    | Nein      | 00           | 00           | _       |
|        | PID Mode OFF                       | or ib region activ                                                                           |           |              |              |         |
| A072   | P-Anteil                           | Proportional-Verstärkung 0.2 - 5.0                                                           | Ja        | 1,0          | 1,0          |         |
|        | PID P 0001,0                       | 0,2 - 5,0                                                                                    |           |              |              |         |
| A073   | I-Anteil                           | Integral-Zeitkonstante                                                                       | Ja        | 1,0          | 1,0          | S       |
|        | PID I 0001,0s                      | 0,0 - 150 Sekunden                                                                           |           |              |              |         |
| A074   | D-Anteil                           | Differential-Zeitkonstante                                                                   | Ja        | 0,0          | 0,0          | S       |
|        | PID D 000,00s                      | 0,0 - 100 Sekunden                                                                           |           |              |              |         |
| A075   | Anzeigefaktor                      | Istwertanzeige, Multiplikation eines Faktors zur Anzeige prozeßrichtiger Größen 0,01 - 99,99 | Nein      | 1,00         | 1,00         | _       |
|        | PID Cnv 001,00%                    |                                                                                              |           |              |              |         |
| A076   | Eingang Istwertsignal              | Wahl Istwerteingang:                                                                         | Nein      | 00           | 00           | _       |
|        | PID INP OI                         | 00Eingang [OĬ]<br>01Eingang[O]<br>02Netzwerk<br>10Log. Verknüpfungen                         |           |              |              |         |
| A077   | Invertierung<br>PID-Regelung       | 2 Auswahlmöglichkeiten:<br>00SW - IW                                                         | Nein      | 00           | 00           | _       |
|        | PID MINUS OFF                      | 01 (SW - IW)                                                                                 |           |              |              |         |
| A078   | Ausgangsbegrenzung<br>PID-Regelung | Reglerausgang                                                                                | Nein      | 0,0          | 0,0          | %       |
|        | PID Vari 0000,0%                   | 0,0 - 100,0%                                                                                 |           |              |              |         |



**HINWEIS:** Die Einstellung (A073) des Integrators ist die Integratorzeitkonstante Ti, nicht die Verstärkung. Integratorverstärkung ist Ki=1/Ti. Integrator deaktiviert bei A073=0

# **Automatische Spannungsregelung (AVR)**

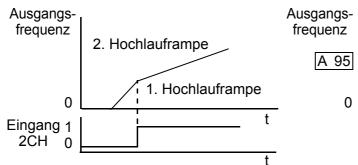
Die AVR-Funktion (**A**utomatic **V**oltage **R**egulation) bewirkt eine Stabilisierung der Motorspannung bei schwankender Zwischenkreisspannung (z. B. durch ein instabiles Netz oder wegen Zwischenkreisspannungs-Einbrüchen bzw. Überhöhungen aufgrund kurzer Hoch- bzw. Runterlaufzeiten), um so ein hohes Drehmoment - insbesondere während des Hochlaufs - aufrechtzuerhalten.

|        | "A" Funktionen                                   |                                                                                                               |           |              | Grundwerte   |          |  |  |
|--------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------|--------------|--------------|----------|--|--|
| FktNr. | Name /<br>SRW Anzeige                            | Beschreibung                                                                                                  | im<br>RUN | -FEF<br>(EU) | -FU<br>(USA) | Einheit  |  |  |
| A081   | AVR-Funktion /<br>Charakteristik<br>AVR Mode ON  | Automatische Spannungs-<br>regulierung:<br>00AVR aktiv<br>01AVR inaktiv<br>02AVR nicht aktiv im<br>Runterlauf | Nein      | 00           | 00           |          |  |  |
| A082   | Motorspannung /<br>Netzspannung<br>AVR AC 00230V | 200V-Umrichter:200215220240 400V-Umrichter:380400415440440480                                                 | Nein      | 230/<br>400  | 230/<br>460  | <b>V</b> |  |  |

2. Hochlauframpe

1. Hochlauframpe

Frequenz


Übergang

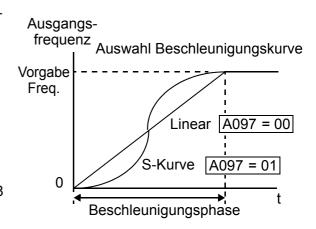
t

## Zeitrampen (2. Hochlauf-, Runterlauframpe)

Während des Betriebs kann von dem unter F002 bzw. F003 eingestellten Zeitrampen auf die unter A092 und A093 programmierten Zeitrampen umgeschaltet werden. Dies kann entweder mit Hilfe eines externen Signals (Digitaleingang [2CH]) zu einem beliebigen Zeitpunkt erfolgen oder bei Erreichen von bestimmten, fest eingegebenen Frequenzen. Dabei sollten allerdings nicht die Begriffe 2. Beschleunigung/Verzögerung mit der Einstellung 2. Parametersatz verwechselt werden!

A094 = 00 Übergang durch Eingang 2CH A094 = 01 Übergang Frequenzwert




|        | "A" Funk                                | tionen                                                              | Einst.    | Grundwerte   |              |         |
|--------|-----------------------------------------|---------------------------------------------------------------------|-----------|--------------|--------------|---------|
| FktNr. | Name /<br>SRW Anzeige                   | Beschreibung                                                        | im<br>RUN | -FEF<br>(EU) | -FU<br>(USA) | Einheit |
| A092   | 2. Hochlaufzeit                         | Hochlaufzeit für Abschnitt der Beschleunigung                       | Ja        | 15,00        | 15,00        | S       |
|        | ACC 2 0015.00s                          | 0,01 - 3000 s                                                       |           |              |              |         |
| A292   | 2. Hochlaufzeit<br>(2. Parametersatz)   | 2. Hochlaufzeit für<br>Abschnitt der Beschleuni-<br>gung            | Ja        | 15,00        | 15,00        | s       |
|        | 2ACC2 015.00s                           | gung<br>(2. Parametersatz)<br>0,01 - 3000 s                         |           |              |              |         |
| A093   | 2. Runterlaufzeit                       | 2. Runterlaufzeit für<br>Abschnitt der Verzögerung<br>0,01 - 3000 s | Ja        | 15,00        | 15,00        | s       |
|        | DEC 2 015.00s                           |                                                                     |           |              |              |         |
| A293   | 2. Runterlaufzeit<br>(2. Parametersatz) | 2. Runterlaufzeit für<br>Abschnitt der Verzöge-                     | Ja        | 15,00        | 15,00        | s       |
|        | 2DEC2 015.00s                           | rung<br>(2. Parametersatz)<br>0,01 - 3000 s                         |           |              |              |         |
| A094   | Umschalten von<br>1. auf 2. Rampe       | 2 Auswahlmöglichkeiten zur Umschaltung 1. auf 2.                    | Nein      | 00           | 00           | _       |
|        | ACC CHG TM                              | Rampe:<br>00 Eingang 2CH<br>01 Umschaltfrequenz<br>(A95/A96)        |           |              |              |         |

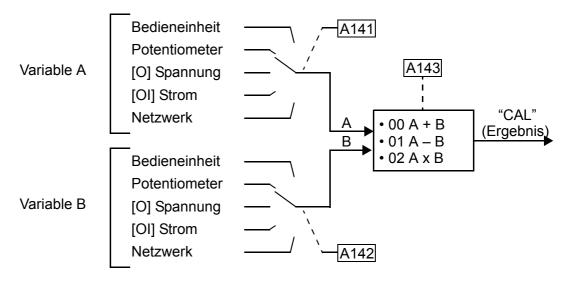
|        | "A" Funl                                                 | ktionen                                                                 | Einst.    | G            | Grundwerte   |         |  |
|--------|----------------------------------------------------------|-------------------------------------------------------------------------|-----------|--------------|--------------|---------|--|
| FktNr. | Name /<br>SRW Anzeige                                    | Beschreibung                                                            | im<br>RUN | -FEF<br>(EU) | -FU<br>(USA) | Einheit |  |
| A294   | Umschalten von<br>1. auf 2. Rampe<br>(2. Parametersatz)  | 2 Auswahlmöglichkeiten<br>zur Umschaltung 1. auf 2.<br>Rampe            | Nein      | 00           | 00           | _       |  |
| 1005   | 2ACCCHG TM                                               | (2. Parametersatz):<br>00Eingang 2CH<br>01Umschaltfrequenz<br>(A95/A96) |           |              |              |         |  |
| A095   | Umschaltfrequenz<br>Hochlaufzeit                         | Umschaltung 1. und 2. No Hochlaufzeit 0,0 - 400,0 Hz                    | Nein      | 0,0          | 0,0          | Hz      |  |
|        | ACC CHfr0000.0Hz                                         |                                                                         |           |              |              |         |  |
| A295   | Umschaltfrequenz<br>Hochlaufzeit<br>(2. Parametersatz)   | Umschaltung 1. und 2.<br>Hochlaufzeit<br>0,0 - 400,0 Hz                 | Nein      | 0,0          | 0,0          | Hz      |  |
|        | 2ACCCHfr0000.0Hz                                         |                                                                         |           |              |              |         |  |
| A096   | Umschaltfrequenz<br>Runterlaufzeit                       | Umschaltung 1. und 2.<br>Runterlaufzeit                                 | Nein      | 0,0          | 0,0          | Hz      |  |
|        | DEC CHfr0000.0Hz                                         | 0,0 - 400,0 Hz                                                          |           |              |              |         |  |
| A296   | Umschaltfrequenz<br>Runterlaufzeit<br>(2. Parametersatz) | Umschaltung 1. und 2.<br>Runterlaufzeit<br>0,0 - 400,0 Hz               | Nein      | 0,0          | 0,0          | Hz      |  |
|        | 2DECCHfr0000.0Hz                                         |                                                                         |           |              |              |         |  |

## Beschleunigungs-/ Verzögerungscharakteristik

Standard bei Beschleunigung und Verzögerung ist eine lineare Kennlinie. Die CPU des Umrichters ist jedoch auch in der Lage eine S-förmige Kennlinie zu berechnen. Diese Kurvenform ist für einige spezielle Anwendungen nützlich.

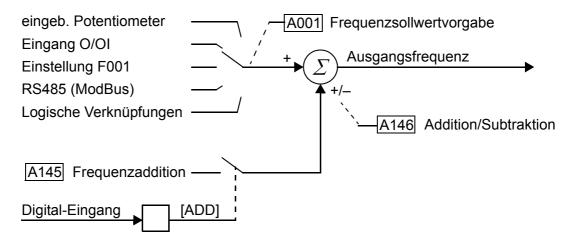
Die Einstellungen der entsprechenden Kennlinien für Beschleunigung und Verzögerung sind unabhängig voneinander einstellbar. Für die Auswahl der Kennlinie wird Parameter A097 und A098 verwendet.




|        | "A" Funktionen           |                                                                |           | Grundwerte   |              |         |
|--------|--------------------------|----------------------------------------------------------------|-----------|--------------|--------------|---------|
| FktNr. | Name /<br>SRW Anzeige    | Beschreibung                                                   | im<br>RUN | -FEF<br>(EU) | -FU<br>(USA) | Einheit |
| A097   | Hochlaufcharakteristik   | Kurvenform 1. und 2.<br>Hochlaufzeit:<br>00linear<br>01S-Kurve | Nein      | 00           | 00           | _       |
|        | ACC LINE L               |                                                                |           |              |              |         |
| A098   | Runterlaufcharakteristik | Kurvenform 1. und 2.                                           | Nein      | 00           | 00           | _       |
|        | DEC LINE L               | Runterlaufzeit:<br>00linear<br>01S-Kurve                       |           |              |              |         |

# Einstellungen Sollwertanpassung Analog-Eingang Ol

**Einstellungen Eingangsbereich** – Eine individuelle Anpassung des externen Sollwertes kann unter den folgenden Funktionen vorgenommen werden. Ein frei wählbarer Sollwertbereich kann einem beliebigen Frequenzbereich zugeordnet werden. Die Funktion ist vergleichbar mit der "Einstellung Sollwertanpassung Analog-Eingang O, OI und internes Potentiometer" auf Seite 3–14.


|        | "A" Funk                                 | tionen                                                                     | Einst.    | Grundwerte   |              |         |
|--------|------------------------------------------|----------------------------------------------------------------------------|-----------|--------------|--------------|---------|
| FktNr. | Name /<br>SRW Anzeige                    | Beschreibung                                                               | im<br>RUN | –FEF<br>(EU) | -FU<br>(USA) | Einheit |
| A101   | [OI]–[L]<br>Frequenz bei Min<br>Sollwert | Unterschreitung min. Sollwert, Verwendung der min. Frequenz 0,0 - 400,0 Hz | Nein      | 0,0          | 0,0          | Hz      |
|        | OI-EXS 0000,0Hz                          | 10,0 - 400,0 Hz                                                            |           |              |              |         |
| A102   | [OI]–[L]<br>Frequenz bei Max<br>Sollwert | Überschreitung max. Sollwert, Verwendung der max. Frequenz 0,0 - 400,0 Hz  | Nein      | 0,0          | 0,0          | Hz      |
|        | OI-EXE 0000,0Hz                          |                                                                            |           |              |              |         |
| A103   | [OI]–[L] MinSollwert                     | Werteingabe bezieht sich                                                   | Nein      | 0,0          | 0,0          | %       |
|        | OI-EX%S 00000%                           | auf max. möglichen Sollwert<br>0 - 100 %                                   |           |              |              |         |
| A104   | [OI]–[L] MaxSollwert                     | Werteingabe bezieht sich                                                   | Nein      | 100          | 100          | %       |
|        | OI-EX%E 00100%                           | auf max. möglichen Sollwert<br>0 - 100 %                                   |           |              |              |         |
| A105   | [OI]–[L]<br>Startbedingung               | 2 Auswahlmöglichkeiten:<br>00min. Frequenz (A101)                          | Nein      | 01           | 01           | _       |
|        | OI-LVL 0Hz                               | 010 Hz                                                                     |           |              |              |         |

**Arithmetische Verknüpfungen Analog-Eingänge** – Der Umrichter kann zwei Variablen mathematisch zu einem Wert miteinander verknüpfen. Durch arithmetische Verknüpfungen werden diese Variablen miteinander addiert, subtrahiert oder multipliziert. Diese Funktion wird bei verschiedenen Anwendungen benötigt. Das Ergebnis kann für die Ausgangsfrequenz (A001=10) oder als Eingang einer Prozessvariablen eines PID-Reglers (A076=03) verwendet werden.



|        | "A" Funktionen                            |                                                                                                                                           |           | Grundwerte   |              |         |
|--------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|--------------|---------|
| FktNr. | Name /<br>SRW Anzeige                     | Beschreibung                                                                                                                              | im<br>RUN | -FEF<br>(EU) | -FU<br>(USA) | Einheit |
| A141   | Rechenfunktion (Variable A)  CALC Slct1 O | 5 Wahlmöglichkeiten: 00 Bedieneinheit 01 eingeb. Potentiometer 02 [O] Spannungseingang 03 [OI] Stromeingang 04 Netzwerkvariable           | Nein      | 02           | 02           | _       |
|        | CALC SICII O                              |                                                                                                                                           |           |              |              |         |
| A142   | Rechenfunktion (Variable B)               | 5 Wahlmöglichkeiten: 00 Bedieneinheit 01 eingeb. Potentiometer 02 [O] Spannungseingang 03 [OI] Stromeingang 04 Netzwerkvariable           | Nein      | 03           | 03           | _       |
|        | CALC Slct2 OI                             |                                                                                                                                           |           |              |              |         |
| A143   | Rechenfunktion                            | Berechnung eingegebener                                                                                                                   | Nein      | 00           | 00           | _       |
|        | CALC SMBL ADD                             | Werte A (A141) und B (A142): 00 ADD (A + B) 01 SUB (A - B) ACHTUNG!!! Bei negativem Ergebnis erfolgt Drehrichtungsum- kehr 02 MUL (A x B) |           |              |              |         |

**Frequenzaddition** – Der Umrichter kann zur Ausgangsfrequenz (vorgegeben durch A001) einen Frequenz-Offset addieren oder subtrahieren. Dieser Offset kann in Parameter A145 gespeichert werden. Er wird durch das Beschalten eines Digital-Eingangs [ADD] bearbeitet. In Parameter A146 wird festgelegt, ob der Offset zur Ausgangsfrequenz addiert oder subtrahiert wird. Bei Konfiguration eines Digital-Eingangs mit der Funktion [ADD], kann der Anwendung der festgelegte Wert aus A145 in Echtzeit wahlweise hinzugefügt oder abgezogen werden.



|        | "A" Funktionen                         |                                                               |           |              | Grundwerte   |         |  |
|--------|----------------------------------------|---------------------------------------------------------------|-----------|--------------|--------------|---------|--|
| FktNr. | Name /<br>SRW Anzeige                  | Beschreibung                                                  | im<br>RUN | -FEF<br>(EU) | -FU<br>(USA) | Einheit |  |
| A145   | Offset Frequenz-<br>addition           | Offset zur Addition der<br>Ausgangsfrequenz<br>0,0 - 400,0 Hz | Ja        | 0,0          | 0,0          | Hz      |  |
| S      | ST-PNT 0000.0Hz                        |                                                               |           |              |              |         |  |
| A146   | Frequenzaddition / Frequenzsubtraktion | uenzsubtraktion 00Plus (addiert A145 zur                      | Nein      | 00           | 00           | _       |  |
|        | ADD DIR PLUS                           |                                                               |           |              |              |         |  |

## **Einstellung Sollwertanpassung Internes Potentiometer**

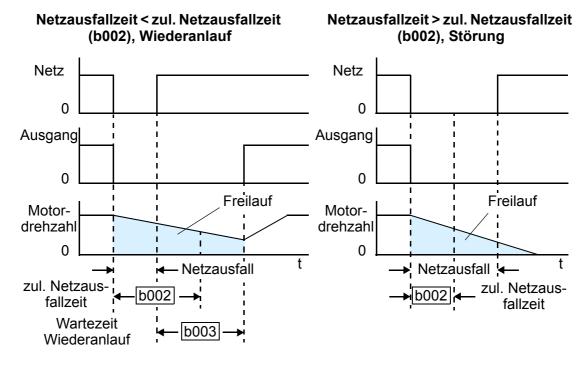
**Einstellungen Eingangsbereich –** Eine individuelle Anpassung des Sollwertes über das interne Potentiometer kann unter den folgenden Funktionen vorgenommen werden. Ein frei wählbarer Sollwertbereich kann einem beliebigen Frequenzbereich zugeordnet werden. Die Funktion ist vergleichbar mit der "Einstellung Sollwertanpassung Analog-Eingang O, OI und internes Potentiometer" auf Seite 3–14 oder "Einstellung Sollwertanpassung Analog-Eingang OI" auf Seite 3-32.

|        | "A" Funk                                             | tionen                                                                             | Einst.    | G            | irundwe      | erte    |
|--------|------------------------------------------------------|------------------------------------------------------------------------------------|-----------|--------------|--------------|---------|
| FktNr. | Name /<br>SRW Anzeige                                | Beschreibung                                                                       | im<br>RUN | -FEF<br>(EU) | -FU<br>(USA) | Einheit |
| A151   | [Int. Potentiometer]<br>Frequenz bei Min<br>Sollwert | Sollwert, Verwendung der min. Frequenz 0,0 - 400,0 Hz                              | Nein      | 0,0          | 0,0          | Hz      |
|        | POT EXS 0.0                                          |                                                                                    |           |              |              |         |
| A152   | [Int. Potentiometer] Frequenz bei Max Sollwert       | Überschreitung max.<br>Sollwert, Verwendung der<br>max. Frequenz<br>0,0 - 400,0 Hz | Nein      | 0,0          | 0,0          | Hz      |
|        | POT EXE 0.0                                          |                                                                                    |           |              |              |         |
| A153   | [Int. Potentiometer]<br>MinSollwert                  | Werteingabe bezieht sich auf max. möglichen Sollwert                               | Nein      | 0,0          | 0,0          | %       |
|        | POT EX%S 0.0                                         | 0 - 100 %                                                                          |           |              |              |         |
| A154   | [Int. Potentiometer]<br>MaxSollwert                  | Werteingabe bezieht sich auf max. möglichen Sollwert                               | Nein      | 100          | 100          | %       |
|        | POT EX%E 0.0                                         | 0 - 100 %                                                                          |           |              |              |         |
| A155   | [Int. Potentiometer]<br>Startbedingung               | 2 Auswahlmöglichkeiten:<br>00 min. Frequenz (A151)                                 | Nein      | 01           | 01           | _       |
|        | POT LVL 01                                           | 01 0 Hz                                                                            |           |              |              |         |

# Gruppe "b": Feinabstimmungsfunktionen

Mit Funktionen und Parametern der Gruppe "b" kann der Antrieb in Hinsicht auf Motorsteuerung und Systemkonfiguration noch genauer abgeglichen werden.

#### **Automatischer Wiederanlauf**


Diese Funktion bewirkt ein selbstständiges Wiederanlaufen des Frequenzumrichters und somit des Antriebs bei einer Störung nach Ablauf der eingestellten Wartezeit - wenn ein Startbefehl weiterhin anliegt. Es ist sicherzustellen, dass im Falle eines Wiederanlaufs keine Personen gefährdet werden.

Mit dem Wiederanlauf wird festgelegt, wie sich der Umrichter nach einer Störung verhält. Es gibt vier verschiedene Möglichkeiten. Die Anzahl der Neustarts kann eingestellt werden, und ist abhängig von der Art der Störmeldung:

- Überstrom: max. 3 Wiederanlaufversuche, dann Störmeldung (E01 E04)
- Überspannung: max. 3 Wiederanlaufversuche, dann Störmeldung (E07, E15)
- Unterspannung, kurzzeitiger Netzausfall: max. 16 Wiederanlaufversuche, danach Störmeldung (E09, E16)

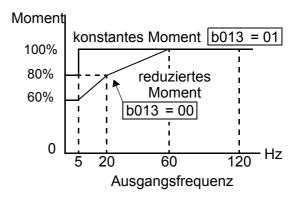
Bei Erreichen der maximalen Anzahl an Neustarts (3 oder 16), muss der Betrieb des Umrichters neu gestartet werden.

Weitere Parameter geben den Wert für die Netzausfallzeit (b002) und die Wartezeit (b003) für einen Wiederanlauf an. Die passenden Einstellungen sind von den Störbedingungen der Anwendung abhängig. Ein unerwarteter Wiederanlauf kann zu Schäden führen.



# Kurzzeitiger Netzausfall / Unterspannung

Mit Parameter b004 wird die Funktion Kurzzeitiger Netzausfall / Unterspannung aktiviert bzw. deaktiviert. Bei aktivierter Funktion sind die Einstellungen unter Parameter b001 und b002 nicht gültig.


|        | "b" Funk                                                    | tionen                                                                                                                                                                                                        | Einst.    | G            | Frundwe      | erte    |
|--------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|--------------|---------|
| FktNr. | Name /<br>SRW Anzeige                                       | Beschreibung                                                                                                                                                                                                  | im<br>RUN | -FEF<br>(EU) | -FU<br>(USA) | Einheit |
| b001   | Wiederanlaufmodus  IPS POWR ALM                             | 00 Störmeldung<br>01 0Hz-Start<br>02 Synchronisierung<br>03 Synchronisierung+Stop                                                                                                                             | Nein      | 00           | 00           | _       |
|        | IFSTOWN ALM                                                 |                                                                                                                                                                                                               |           |              |              |         |
| b002   | Zulässige<br>Netzausfallzeit                                | Zulässige Netzausfallzeit,<br>ohne Auslösen der Störmel-<br>dung Unterspannung. Bei<br>Netzausfallzeit länger als<br>die hier programmierte Zeit<br>geht der Frequenzumrich-<br>ter auf Störung<br>0,3 - 25 s | Nein      | 1,0          | 1,0          | S       |
|        | IPS Time 0001.0s                                            |                                                                                                                                                                                                               |           |              |              |         |
| b003   | Wartezeit vor<br>Wiederanlauf                               | Wartezeit nach Störmeldung vor Aktivierung autom.                                                                                                                                                             | Nein      | 1,0          | 1,0          | S       |
|        | IPS Wait 0001.0s                                            | Wiederanlaufs<br>0,3 - 100 s                                                                                                                                                                                  |           |              |              |         |
| b004   | Kurzzeitiger Netzaus-<br>fall / Unterspannung<br>Stillstand | 2 Wahlmöglichkeiten:<br>00 keine Störmeldung<br>01 Störmeldung                                                                                                                                                | Nein      | 00           | 00           | S       |
|        | IPS TRIP OFF                                                |                                                                                                                                                                                                               |           |              |              |         |
| b005   | Anzahl der Neustarts nach Netzausfall                       | 2 Wahlmöglichkeiten:<br>00 16 Versuche                                                                                                                                                                        | Nein      | 00           | 00           | S       |
|        | IPS RETRY 16                                                | 01 unbegrenzt                                                                                                                                                                                                 |           |              |              |         |

# Einstellungen elektronischer Motorschutz

Die Frequenzumrichter der Serie L200 können den angeschlossenen Motor mittels einer elektronischen Bimetallnachbildung thermisch überwachen.

Wählen Sie zuerst mit Parameter b013 die Charakteristik Ihrer Last aus.

Das Moment des Motors steht im Zusammenhang mit dem Strom in den Wicklungen und der entstehenden Wärmeentwicklung. Der elektronische Motorschutz muss als Grenzwert in Parameter b012 eingestellt



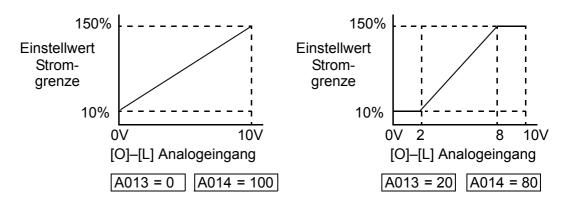
werden. Der Bereich liegt bei jedem Umrichter zwischen 20% bis 120% des Nennstroms. Bei Überschreitung der eingestellten Stromgrenze, geht der Umrichter in Störung und trägt die entsprechende Störmeldung (Fehler E05) in den Störspeicher ein. Bei einer Störung wird der Ausgang vom Umrichter abgeschaltet. Getrennte Einstellungen für den 2. Parametersatz sind möglich.

|            | "b" Funkt                                                                                 | ionen                                                                                                                           | Einst.    | G                      | irundwe       | erte    |
|------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------|---------------|---------|
| Fkt<br>Nr. | Name /<br>SRW Anzeige                                                                     | Beschreibung                                                                                                                    | im<br>RUN | -FEF<br>(EU)           | -FU<br>(USA)  | Einheit |
| b012       | Elektronischer Motor-<br>schutz / Einstellwert                                            | 0,2 1,2 x FU-Nennstrom                                                                                                          | Nein      |                        | U-<br>trom *1 | A       |
|            | E-THM LVL001.60A                                                                          |                                                                                                                                 |           |                        |               |         |
| b212       | Elektronischer<br>Motorschutz /<br>Einstellwert<br>(2. Parametersatz)                     | 0,2 1,2 x FU-Nennstrom                                                                                                          | Nein      | FU-<br>Nennstrom<br>*1 |               | Α       |
|            | 2ETHM LVL 01.60A                                                                          |                                                                                                                                 |           |                        |               |         |
| b013       | Elektronischer Motor-<br>schutz / Charakteristik                                          | 2 Kurven zur Wahl:<br>00 für quadratisches                                                                                      | Nein      | 01                     | 01            | _       |
|            | E-THM CHAR CRT                                                                            | Moment 01 für konstantes Moment 02 für quadratisches Moment (stärkere Kurven- krümmung)                                         |           |                        |               |         |
| b213       | Elektronischer<br>Motorschutz /<br>Charakteristik<br>(2. Parametersatz)<br>2ETHM CHAR CRT | 2 Kurven zur Wahl: 00 für quadratisches Moment 01 für konstantes Moment 02 für quadratisches Moment (stärkere Kurven- krümmung) | Nein      | 01                     | 01            | _       |

Hinweis 1: Für Umrichtertypen 004NFE(F)2, 007NFE(F)2 und 030HFE(F)2 ist der Wert kleiner als der angegebene Nennstrom (ähnlich Typen 005NFE(F)2, 011NFE(F)2 und 040HFE(F)2). Daher die Einstellung des elektronischen Motorschutzes entsprechend des angeschlossenen Motors vornehmen.



**WARNUNG:** Einstellung Parameter b012, elektronischer Motorschutz, gemäß Nennstrom des Motortypenschilds. Bei Überschreitung des Wertes von Parameter b012 kann der Motor überhitzen bzw. zerstört werden. Parameter b012 ist einstellbar.


### Stromgrenze

Die Stromgrenze ermöglicht eine Begrenzung des Motorstroms. Sobald der Ausgangsstrom die unter dieser Funktion eingestellte Stromgrenze überschreitet, beendet der Frequenzumrichter den Frequenzanstieg in der Beschleunigungsphase oder verringert die Ausgangsfrequenz während des statischen Betriebs um den Laststrom zu reduzieren (die Zeitkonstante für Regelung an der Stromgrenze wird unter b023 eingegeben). Sobald der Ausgangsstrom unter die eingestellte Stromgrenze fällt, wird die Frequenz wieder angehoben und auf den eingestellten Sollwert gefahren. Die Stromgrenze kann für die Beschleunigungsphase inaktiviert werden, so dass zur Beschleunigung kurzzeitig größere Ströme zugelassen werden (siehe Funktion b021).



Die Stromgrenze kann das Auslösen einer Störmeldung und Abschalten durch plötzlichen Überstrom z. B. aufgrund eines Kurzschlusses nicht verhindern.

Sie kann sowohl als konstanter Wert wie auch als variabler Wert (Analogeingang) eingestellt werden. Bei Verwendung eines konstanten Wertes muss der Parameter b028/b228 auf 00 und mit Parameter b022/b222 der einzustellende Wert eingestellt werden. Bei Verwendung eines variablen Wertes Parameter b028/b228 auf 01 und den Wert über den Analogeingang [O]-[L] einstellen. Für diesen Fall geben die Werte in Parameter A013 und A014 den Start- bzw. Endpunkt an.



Bei Stromgrenzeneinstellung über Analogeingang (b028/b228 = 01) wird die Einstellung in b022/b222 nicht beachtet. Stattdessen wird der Analogwert [A] in Parameter b022/b222 geschrieben. Dabei wird der eingestellte Wert angezeigt. Er kann nicht gespeichert werden. Bei Verwendung des 2. Parametersatzes zeigt der Umrichter "void (ungültig)" bei b022 oder b222, entsprechend des ausgewählten Motors durch die Funktion SET oder SP-SET, an.

| DigEingang | Status | b022                  | b222                  | Einheit |
|------------|--------|-----------------------|-----------------------|---------|
| [SET] oder | OFF    | [O]-[L] Analogeingang | void                  | Α       |
| [SP-ST]    | ON     | void                  | [O]-[L] Analogeingang | Α       |

|        | "b" Funk                                                       | tionen                                                                                      | Einst.    | G                  | rundwe       | erte    |
|--------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------|--------------------|--------------|---------|
| FktNr. | Name /<br>SRW Anzeige                                          | Beschreibung                                                                                | im<br>RUN | -FEF<br>(EU)       | -FU<br>(USA) | Einheit |
| b021   | Stromgrenze<br>Charakteristik                                  | Betriebsartenauswahl bei<br>Überlast:<br>00inaktiv                                          | Nein      | 01                 | 01           | _       |
|        | OL Mode ON                                                     | 01aktiv<br>02aktiv, konst. Geschw.                                                          |           |                    |              |         |
| b221   | Stromgrenze<br>Charakteristik<br>(2. Parametersatz)            | Betriebsartenauswahl bei<br>Überlast:<br>00inaktiv                                          | Nein      | 01                 | 01           | _       |
|        | 2OL Mode ON                                                    | 01aktiv<br>02aktiv, konst. Geschw.                                                          |           |                    |              |         |
| b022   | Stromgrenze<br>Einstellwert                                    | Überlastbegrenzung,<br>zwischen 20% und 150%<br>des Umrichternennstroms.                    | Nein      |                    | strom<br>1,5 | А       |
|        | OL LVL 002.40A                                                 | Auflösung 1 % des<br>Nennstroms                                                             |           |                    |              |         |
| b222   | Stromgrenze<br>Einstellwert<br>(2. Parametersatz)              | Überlastbegrenzung,<br>zwischen 20% und 150%<br>des Umrichternenn-<br>stroms. Auflösung 1 % | Nein      | Nennstrom<br>x 1,5 |              | Α       |
|        | 2OL LVL 002.40A                                                | des Nennstroms                                                                              |           |                    |              |         |
| b023   | Stromgrenze<br>Zeitkonstante                                   | Frequenzreduzierung in der vorgegebenen Zeit bei Erreichen der Stromgrenze                  | Nein      | 1,0                | 30,0         | S       |
|        | OL Cnst 0001.0s                                                | Bereich 0,1 - 30,0<br>(Auflösung 0,1)                                                       |           |                    |              |         |
| b223   | Stromgrenze<br>Zeitkonstante<br>(2. Parametersatz)             | Frequenzreduzierung in der vorgegebenen Zeit bei Erreichen der Strom-                       | Nein      | 1,0                | 30,0         | s       |
|        | 2OL Cnst 0001.0s                                               | grenze<br>Bereich 0,1 - 30,0<br>(Auflösung 0,1)                                             |           |                    |              |         |
| b028   | Anwahl Stromgrenze/<br>Einstellwert                            | Anwahlart der<br>Stromgrenzeinstellung:                                                     | Nein      | 0                  | 0            | _       |
|        | OL L-Slet C022                                                 | 00Parameter b022/b222<br>01Analogeingang [O]-[L]                                            |           |                    |              |         |
| b228   | Anwahl Strom-<br>grenze/<br>Einstellwert<br>(2. Parametersatz) | Anwahlart der<br>Stromgrenzeinstellung:<br>00Parameter b022/b222<br>01Analogeingang [O]-    | Nein      | 0                  | 0            | _       |
|        | 2OL L-Slct C022                                                | [L]                                                                                         |           |                    |              |         |

### **Parametersicherung**

Die Parametersicherung schützt eingegebene Parameter vor Verlust durch Überschreiben.

Die untere Tabelle zeigt alle möglichen Kombinationen von b031 und den entsprechenden Zugriff bei OFF/ON-Status des Eingangs [SFT]. Die Bezeichnung der Parameter mit "Ja" (Zugriff erlaubt) oder "Nein" (Zugriff nicht erlaubt) zeigt an, ob ein Zugriff generell oder bei Run/Stop möglich ist. In der Spalte "Standard Parameter" wird angegeben, in welchem Modus der Zugriff erlaubt ist. Diese bezieht sich auf die Parametertabelle außerhalb dieses Kapitels, die eine Spalte mit der Bezeichnung

| Einst.<br>im<br>RUN |  |
|---------------------|--|
| Nein                |  |
| Ja                  |  |
|                     |  |

"Run-Modus" enthält. Die Bezeichnungen ("Ja" oder "Nein") geben an, welche Parameter unter bestimmten Voraussetzungen zugänglich sind. Bei bestimmten Einstellungen kann lediglich F001 und die Festfrequenzen (A020, A220, A021-A035 und A038) verändert werden. Der Zugriff auf b031 wird in den rechten beiden Spalten dargestellt.

| b031<br>Sicherungs- | [SFT]<br>Eingänge | Standard | Parameter             | F001 und<br>Festfrequenz | b(   | 031  |
|---------------------|-------------------|----------|-----------------------|--------------------------|------|------|
| Modus               | Emgange           | Stop     | Run                   | Stop & Run               | Stop | Run  |
| 00                  | OFF               | Ja       | Zugang im<br>Run-Mode | Ja                       | Ja   | Nein |
|                     | ON                | Nein     | Nein                  | Nein                     | Ja   | Nein |
| 01                  | OFF               | Ja       | Zugang im<br>Run-Mode | Ja                       | Ja   | Nein |
|                     | ON                | Nein     | Nein                  | Ja                       | Ja   | Nein |
| 02                  | (ignoriert)       | Nein     | Nein                  | Nein                     | Ja   | Nein |
| 03                  | (ignoriert)       | Nein     | Nein                  | Ja                       | Ja   | Nein |
| 10                  | (ignoriert)       | Ja       | Zugang im<br>Run-Mode | Ja                       | Ja   | Ja   |



**HINWEIS:** Parametersicherung ist mit dem Parameter b031 möglich, ist jedoch nicht mit der Funktion eines Paßwortschutzes zu verwechseln. Bei Einstellung "10" können alle Werte aus der Spalte "Einst. in RUN", mit der Bezeichnung "Ja", verändert werden

|        | "b" Funktionen                |                                                                                                                                                                                         |           | G            | rundwe       | erte    |
|--------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|--------------|---------|
| FktNr. | Name /<br>SRW Anzeige         | Beschreibung                                                                                                                                                                            | im<br>RUN | -FEF<br>(EU) | -FU<br>(USA) | Einheit |
| b031   | Parametersicherung S-Lock MD1 | Vermeidung Parameter-<br>änderungen:<br>00 Eingang SFT<br>Parameter + Sollwert<br>01 Eingang SFT<br>nur Parameter<br>02 Parameter + Sollwert<br>03 nur Parameter<br>10 RTDE-Modus aktiv | Nein      | 01           | 01           | _       |



**HINWEIS:** Um den Parameterzugriff bei Verwendung von b031, Einstellung 00 und 01, zu deaktivieren, konfigurieren Sie einen digitalen Eingang mit der Funktion [SFT]. Siehe auch "Parametersicherung" auf Seite 4–22.

### Sonstige Einstellungen

Sonstige Einstellungen beinhalten Skalierungsfaktoren, Initialisierungen und weitere. Dieser Abschnitt beschreibt einige der wichtigsten Einstellungen, die für die Konfiguration benötigt werden.

**b032:** Motor-Leerlaufstrom (Anzeige nur im Debug-Modus!) – Jeder Umrichter ist für eine bestimmte Motorgröße ausgelegt (Nennleistung). Der Umrichter ermittelt den Motorstrom, wobei davon ausgegangen wird, dass der Umrichter zur Motorgröße passt. Bei Verwendung einer stark abweichenden Motorgröße (oder Mehrmotorenbetrieb), muss der Umrichter für diese Variation abgeglichen werden. Mit der Einstellung von Parameter b032, Motor-Leerlaufstrom, wird die Berechnung des Umrichterstroms korrigiert. Der Umrichter benötigt diese Berechnung für folgende Funktionen:

- d002 Motorstrom
- b012 Elektrischer Motorschutz
- b212 Elektrischer Motorschutz (2. Parametersatz)
- b022 Einstellwert Stromgrenze

Der Strom sollte unter folgenden Bedingungen ±20% betragen:

- · Anschluss eines Standardmotors
- Die Ausgangsfrequenz des Umrichters ist 50% oder größer der maximalen Ausgangsfrequenz
- · Der Ausgangsstrom des Umrichters ist innerhalb des Nennstroms

Ermittelung des Motor-Leerlaufstroms:

1. Direkter Netzanschluss des Motors mit der entsprechenden Last.



**WARNUNG:** Verwendung eines Leistungsschalters, um zu gewährleisten, dass der Motor oder Umrichter nicht unter Spannung angeschlossen wird. Andernfalls besteht die Gefahr eines Stromschlags.

- **2.** Motor einschalten (im Stillstand), den Strom mit einer Stromzange messen und den Wert notieren.
- **3.** Motor ausschalten, vom Netz abklemmen und wieder an den Umrichterausgang anschließen.
- **4.** Motor mit Nennfrequenz (Wert von Parameter A003) laufen lassen. Motorstrom unter Funktion d002 beobachten.
- **5.** Stimmt der Wert von d002 nicht mit dem gemessenen Wert überein, den Parameter b032 so einstellen, bis die beste Einstellung erreicht wird.



**HINWEIS:** Bei Geräten der Version 2 wird der Parameter b032 nur im Debug-Modus angezeigt.



**HINWEIS:** Die Einstellung des Parameters b032 beeinflusst auch den elektronischen Motorschutz (b012) und die Stromgrenze (b022) des Umrichters.



**HINWEIS:** Bei einem niedrigen Wert von Parameter b032 ist der Effekt des elektronischen Motorschutzes und der Stromgrenze nicht exakt.

**b080:** [AM] Abgleich Analog-Ausgang – Dieser Parameter ermöglicht die Skalierung des Analog-Ausgangs [AM] für eine zu überwachende Variable.

**b082: Startfrequenz** – Die Startfrequenz ist die Frequenz, mit der der Motor nach einem Startbefehl als erstes beaufschlagt wird. Eine Erhöhung der Startfrequenz hat eine entsprechende Verringerung der Hoch- bzw. Runterlaufzeit zur Folge.

**b083: Taktfrequenz –** Hohe Taktfrequenzen verursachen niedrigere Motorgeräusche und geringere Verluste im Motor - jedoch höhere Verluste in den Endstufen und größere Störungen auf den Netz- und Motorleitungen. Bei Taktfrequenzen > 12 kHz beträgt die maximal zulässige Umgebungstemperatur 40 °C und der FU-Nennstrom 80% des angegebenen Wertes.

Die Taktfrequenz läßt sich in einem Bereich von 2,0 kHz bis 14,0 kHz einstellen.



**HINWEIS:** Die Taktfrequenz muss sich innerhalb bestimmter Grenzen (Umrichter/ Motor) befinden. Eine für den europäischen Markt CE-geprüfte Anwendung benötigt einen Umrichter mit einer Taktfrequenz von kleiner als 5kHz.

**b084: Werkseinstellung/Initialisierung –** Dieser Parameter ermöglicht die Wiederherstellung der Grundeinstellungen für alle Parameter. Siehe auch Kapitel "Wiederherstellen der Werkseinstellungen" auf Seite 6–9.

**b085:** Werkseinstellungsparameter/Ländercode – Bei Anwahl der werksseitigen Grundeinstellungen unter Funktion b084 muss hier angegeben werden, welche marktspezifischen Parameter als Grundparameter abgelegt werden sollen. Für die Geräte L200- ... NFE bzw. L200- ... HFE (Europaversion) muss 01 eingegeben werden.

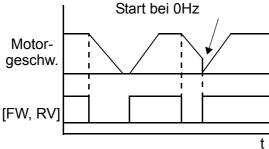
**b086: Frequenzanzeigefaktor –** Diese Funktion bezieht sich nur auf die Anzeige unter d007. Das Produkt aus dem unter Funktion d001 angezeigten Wert und diesem Faktor wird unter Funktion d007 angezeigt. Verwenden Sie folgende Formel:

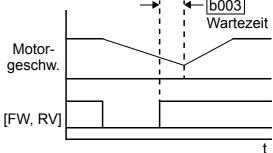
Skalierte Frequenz (d007) = Ausgangsfrequenz (d001) xFaktor (b086)

|        | "b" Funkt                                                   | ionen                                                                                                                                              | Einst.    | G            | rundwe       | erte    |
|--------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|--------------|---------|
| FktNr. | Name /<br>SRW Anzeige                                       | Beschreibung                                                                                                                                       | im<br>RUN | -FEF<br>(EU) | -FU<br>(USA) | Einheit |
| b032   | Motor-Leerlaufstrom Io-SET 00100%                           | Abgleich des Motor-<br>Leerlaufstroms (ohne Last).<br>Eingabe des Leerlaufstroms<br>50 - 200%<br>(Parameter wird nur im<br>Debug-Modus aufgerufen) | Nein      | 100          | 100          | %       |
| b080   | Abgleich Analog-<br>Ausgang [AM]<br>AM-Adj 00100%           | Abgleich Analog-Ausgang<br>Klemme [AM]<br>0 - 255                                                                                                  | Nein      | 100          | 100          | _       |
| b082   | Startfrequenz<br>fmin 0000,5Hz                              | Einstellung Startfrequenz<br>des Umrichterausgangs<br>0,5 - 9,9 Hz                                                                                 | Nein      | 0,5          | 0,5          | Hz      |
| b083   | Taktfrequenz Carrier 0005,0                                 | Einstellung Taktfrequenz<br>(interne Schaltfrequenz)<br>2,0 - 14,0 kHz                                                                             | Nein      | 5,0          | 5,0          | kHz     |
| b084   | Werkseinstellung /<br>Initialisierung<br>INIT Mode TRP      | Auswahl Werkseinstellung / Initialisierung: 00 Störmeldungen löschen 01 Werkseinstellung 02 Störmeldungen löschen +Werkseinstellung                | Nein      | 00           | 00           | _       |
| b085   | Werkseinstellungs-<br>parameter/Ländercode<br>INIT Slct USA | Auswahl der länderspezifischen Parameter: 00Japan 01Europa 02USA                                                                                   | Nein      | 01           | 02           | _       |
| b086   | Frequenzanzeigefaktor Cnv Gain 0001,0                       | Eingabe Frequenzfaktor für<br>Anzeige d007<br>0,1 - 99,9                                                                                           | Ja        | 1,0          | 1,0          | _       |
| b087   | Aktivierung Stop-Taste der Bedientastatur STP Key ON        | Sperrung Stop-Taste:<br>00 Taste aktiv<br>01 Taste inaktiv                                                                                         | Nein      | 00           | 00           | _       |

**b091/b088:** Stop-Modus / Motorsynchronisation – Das Verhalten des Umrichters nach einem Stop-Befehl kann eingestellt werden. Mit Parameter b091 wird ausgewählt, ob der Motor an der Rampe abgebremst wird oder frei ausläuft. Beim freien Auslauf muss zwingend angegeben werden, wie der Wiederanlauf des Motors erfolgen soll. Mit der Einstellung in b088 wird festgelegt, ob der Start bei 0Hz erfolgt oder der Motor auf die aktuelle Leerlaufgeschwindigkeit aufsynchronisiert wird. Bei kurzzeitigem Ausfall des Startbefehls muss berücksichtigt werden, dass der Motor den Betrieb mit einer geringeren Geschwindigkeit wieder aufnimmt.

Bei vielen Anwendungen ist ein geführtes Abbremsen, entsprechend b091=00, wünschenswert. Anwendungen aus dem Lüfterbereich, benötigen häufig einen freien Auslauf, um bei Wiederanlauf mit b088=01 auf die aktuelle Leerlaufgeschwindigkeit aufsynchronisieren zu können (Darstellung unten rechts). Bei Grundeinstellung b088=00 kann eine Störung auftreten, wenn der Umrichter lastbedingt schnell abbremsen muss.





**HINWEIS:** Einige Ereignisse bewirken einen freien Auslauf, wie ein Netzausfall (siehe "Automatischer Wiederanlauf" auf Seite 3–34) oder die Aktivierung der Reglersperre über einen Digital-Eingang [FRS]. Das Verhalten bei freiem Auslauf ist für einige Anwendungen sehr wichtig (z. B. Lüfter, Ventilatoren), konfigurieren Sie jedes Ereignis entsprechend.

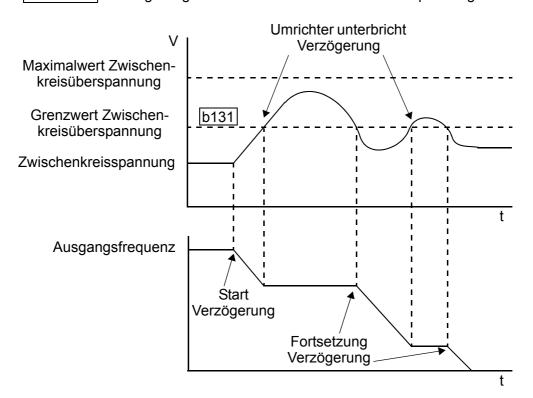
Ein zusätzlicher Parameter beeinflusst den freien Auslauf. Mit Parameter b003 (Wartezeit vor Wiederanlauf) wird eine Wartezeit eingestellt, die zur benötigten Auslaufzeit hinzugefügt wird.

**Beispiel:** Bei einer Wartezeit von 4s (b003 = 4s und b091 = 01) und einer benötigten Auslaufzeit von 10s, läuft der Motor 14s lang aus, vor Wiederanlauf.

 $\boxed{b091 = 01}$  Stop-Modus = freier Auslauf  $\boxed{b091 = 01}$  Stop-Modus = freier Auslauf  $\boxed{b088 = 00}$  Start bei 0Hz  $\boxed{b088 = 01}$  Synchronisierung  $\boxed{b088 = 01}$  Synchronisierung






**b089:** Anzeigenauswahl für einen vernetzten Umrichter – Bei Steuerung des Umrichters L200 über ein Netzwerk können bestimmte Parameter (d001 - d007) mit der Umrichteranzeige dargestellt werden. Der Parameter d00x, der in Parameter b089 eingestellt wurde, wird dann auf der Anzeige angezeigt. Für weitere Informationen sehen Sie auch "Umrichteranzeige bei Betrieb im Netzwerk" auf Seite 3–8.

**b130/b131:** Einstellwert Zwischenkreisüberspannung – Die Überwachung der Zwischenkreisüberspannung kontrolliert den Zwischenkreis und ändert das aktuelle Profil der Ausgangsfrequenz so, dass die Zwischenkreisspannung den eingestellten Wert (b131) nicht überschreitet. "LAD" bedeutet "Linear Acceleration-Deceleration", dabei wird nur die Verzögerungsrampe unterbrochen, so dass durch die zurückgespeiste Spannung die Zwischenkreisspannung nicht so erhöht wird, dass eine Störmel-

dung (Zwischenkreisüberspannung) ausgelöst wird. Die Beschleunigung wird dadurch nicht beeinflusst.

Die untere Zeichnung stellt ein Umrichterausgangsprofil dar, beginnend von der Verzögerung bis zum Stopp. Während der Verzögerung wird an zwei Stellen die Zwischenkreisspannung, durch die zurückgespeiste Spannung so erhöht, dass der Grenzwert von Parameter b131 überschritten wird. Bei Aktivierung von Parameter b130 (b130 = 01), unterbricht der Umrichter die Verzögerungsrampe so lange, bis die Zwischenkreisspannung den Grenzwert von Parameter b131 wieder unterschreitet.

b130 = 01 Verlängerung Runterlaufzeit Zwischenkreisüberspannung = aktiv



Bei Anwendung der Zwischenkreisspannungsüberwachung folgendes beachten:

- Bei Aktivierung der Zwischenkreisspannungsüberwachung (b130 = 01) kann die Verzögerungszeit manchmal länger sein als die unter den Parametern F003/F203 eingestellten Werte.
- Die Zwischenkreisspannungsüberwachung bewirkt KEINE Aufrechterhaltung einer konstanten Zwischenkreisspannung. Dabei besteht immer noch die Möglichkeit, bei extremen Verzögerungen, einen Überspannungsfehler zu bekommen.

Wenn Parameter b131 versehentlich *kleiner* als die normale Zwischenkreisspannung eingestellt ist, wird der Umrichter die Überwachung, wenn aktiviert, ständig anwenden. In diesem Fall kann der Umrichter den Motor beschleunigen und laufen lassen, eine Verzögerung ist jedoch nicht möglich. Wenn die Zwischenkreisspannung nicht bekannt ist, diese messen und mit der Einstellung unter b131 vergleichen. Der Wert unter b131 muss größer als die gemessene Zwischenkreisspannung sein.

**b150:** Temperaturabhängige Taktfrequenz – Bei Einstellung des Parameters b083 (Taktfrequenz) größer als 4 kHz wird bei aktiviertem Parameter b150 (Temperaturabhängige Taktfrequenz) die Taktfrequenz, bei steigender Innentemperatur des Umrichters, auf unter 4 kHz reduziert.

**b151:** Quick-Start-Funktion – Mit der Quick-Start-Funktion wird die Reaktionszeit vom Start-Befehl (z. B. EIN-Signal an Digital-Eingang 1) bis zur Generierung eines Drehfeldes am Ausgang U, V, W optimiert. Quick-Start kann mit Parameter b151 oder über einen Digital-Eingang mit der Funktion [RDY] (Code 52) aktiviert werden.



**HINWEIS:** Parameter b151 kann weder ausgelesen noch auf andere Umrichter kopiert werden. Dies verhindert ein zu frühes unerwartetes Starten des Umrichterausgangs.

|        | "b" Funk                                                           | tionen                                                                                                                                                                                                                                                        | Einst.    | G            | rundwe       | erte    |
|--------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|--------------|---------|
| FktNr. | Name /<br>SRW Anzeige                                              | Beschreibung                                                                                                                                                                                                                                                  | im<br>RUN | -FEF<br>(EU) | -FU<br>(USA) | Einheit |
| b088   | Motorsynchronisation RUN FRS ZST                                   | 00Nein<br>01Ja                                                                                                                                                                                                                                                | Nein      | 00           | 00           | _       |
| b089   | Anzeigenauswahl für<br>einen vernetzten<br>Umrichter<br>PANEL d001 | Auswahl der Parameter die bei einem vernetzten Umrichter angezeigt werden sollen. 7 Wahlmöglichkeiten: 01Ausgangsfrequenz 02Motorstrom 03Drehrichtung 04PID-Regler Istwert 05Status digitale Eingänge 06Status digitale Ausgänge 07skalierte Ausgangsfrequenz | Nein      | 01           | 01           | _       |
|        |                                                                    |                                                                                                                                                                                                                                                               |           |              |              |         |
| b091   | Stop-Modus                                                         | Stop-Befehl Runterlauf-<br>verhalten:                                                                                                                                                                                                                         | Nein      | 00           | 00           | _       |
|        | STP Slet DEC                                                       | 00Rampe<br>01freier Auslauf                                                                                                                                                                                                                                   |           |              |              |         |
| b130   | Verlängerung<br>Runterlaufzeit<br>Zwischenkreisüber-<br>spannung   | Verlängerung Runterlaufzeit<br>Zwischenkreisüberspannung:<br>00inaktiv<br>01aktiv                                                                                                                                                                             | Nein      | 00           | 00           | _       |
|        | OVLADSTOP OFF                                                      |                                                                                                                                                                                                                                                               |           |              |              |         |
| b131   | Einstellwert<br>Zwischenkreisüber-<br>spannung                     | Schwellwert für die Zwischen-<br>kreisüberspannung. Ist die<br>Zwischenkreisspannung über                                                                                                                                                                     | Nein      | 380 /<br>760 | 380 /<br>760 | V       |
|        | LADST LVL 00380V                                                   | dem Grenzwert, beendet der<br>Umrichter die Verzögerung<br>bis die Spannung den einge-<br>stellten Wert wieder unter-<br>schreitet.<br>2 Spannungsbereiche mit<br>einer Auflösung von 1V:<br>Baureihe 200V: 330 - 390V<br>Baureihe 400V: 660 - 780V           |           |              |              |         |
| b150   | Temperaturabhängige Taktfrequenz  Cr-DEC OFF                       | Autom. Reduzierung der<br>Taktfrequenz bei erhöhter<br>Umgebungstemperatur:<br>00inaktiv<br>01aktiv                                                                                                                                                           | Nein      | 00           | 00           | _       |
| b151   | Quick-Start-Funktion  RDY-Func OFF                                 | Verkürzung der Reaktions-<br>zeit durch digi. Eingang:<br>00inaktiv<br>01aktiv                                                                                                                                                                                | Ja        | 00           | 00           | _       |

# Gruppe "C": Steuerfunktionen

Die fünf Eingangsklemmen [1], [2], [3], [4] und [5] können mit 30 verschiedenen Funktionen belegt werden, diese werden im folgenden beschrieben. Die Eingänge haben logische Signale, entweder OFF oder ON. Der Zustand wird mit OFF=0 und ON=1 beschrieben.

Der Umrichter wird mit bestimmten Grundeinstellungen der fünf Eingänge ausgeliefert. Die Versionen Europa und USA haben unterschiedliche Einstellungen. Jeder Eingang kann mit jeder Funktion belegt werden. Eine Funktion kann nicht doppelt - auf zwei Steuereingänge gleichzeitig - programmiert werden.



**HINWEIS:** Klemme [5] kann sowohl als logischer Eingang wie auch als analoger Eingang, für eine Kaltleiterauslösung (Funktionscode 19), genutzt werden.

### Konfiguration Eingangsklemmen

**Funktionen und Optionen** –Die *Funktionen* können auf jeden logischen Eingang des Umrichters der Serie L200 angewendet werden. Die Parameter C001 bis C005 entsprechen den Klemmen [1] bis [5]. Der "Wert" des entsprechenden Parameters ist kein Einstellwert, sondern eine Zahl die aus 28 verschiedenen Möglichkeiten ausgewählt werden kann.

**Beispiel:** Einstellung der Funktion C001=00 bedeutet, dass ein Startbefehl für Rechtslauf auf die Klemme [1] gelegt wurde. Die Möglichkeit und deren Beschreibungen werden in Kapitel 4 beschrieben.

|        | "C" Fu                                       | nktionen                                                            | Einst.    | G            | rundwe       | erte    |
|--------|----------------------------------------------|---------------------------------------------------------------------|-----------|--------------|--------------|---------|
| FktNr. | Name /<br>SRW Anzeige                        | Beschreibung                                                        | im<br>RUN | -FEF<br>(EU) | -FU<br>(USA) | Einheit |
| C001   | Digital-Eingang 1                            | Steuerklemme [1],                                                   | Nein      | 00           | 00           | _       |
|        | IN-TM 1 FW                                   | 30 Möglichkeiten (siehe nächster Abschnitt)                         |           | [FW]         | [FW]         |         |
| C201   | Digital-Eingang 1<br>(2. Parameter-<br>satz) | Steuerklemme [1],<br>30 Möglichkeiten (siehe<br>nächster Abschnitt) | Nein      | 00<br>[FW]   | 00<br>[FW]   | _       |
|        | 2IN-TM 1 FW                                  |                                                                     |           |              |              |         |
| C002   | Digital-Eingang 2                            | Steuerklemme [2],                                                   | Nein      | 01           | 01           | _       |
|        | IN-TM 2 RV                                   | 30 Möglichkeiten (siehe nächster Abschnitt)                         |           | [RV]         | [RV]         |         |
| C202   | Digital-Eingang 2<br>(2. Parameter-<br>satz) | Steuerklemme [2],<br>30 Möglichkeiten (siehe<br>nächster Abschnitt) | Nein      | 01<br>[RV]   | 01<br>[RV]   | _       |
|        | 2IN-TM 2 RV                                  |                                                                     |           |              |              |         |
| C003   | Digital-Eingang 3                            | Steuerklemme [3],                                                   | Nein      | 02<br>[CE1]  | 16<br>[AT]   | _       |
|        | IN-TM 3 AT                                   | 30 Möglichkeiten (siehe nächster Abschnitt)                         |           | [CF1]        | [AT]         |         |

|        | "C" Fu                                       | nktionen                                                            | Einst.    | G            | rundwe       | erte    |
|--------|----------------------------------------------|---------------------------------------------------------------------|-----------|--------------|--------------|---------|
| FktNr. | Name /<br>SRW Anzeige                        | Beschreibung                                                        | im<br>RUN | –FEF<br>(EU) | -FU<br>(USA) | Einheit |
| C203   | Digital-Eingang 3<br>(2. Parameter-<br>satz) | Steuerklemme [3],<br>30 Möglichkeiten (siehe<br>nächster Abschnitt) | Nein      | 02<br>[CF1]  | 16<br>[AT]   | _       |
|        | 2IN-TM 3 AT                                  |                                                                     |           |              |              |         |
| C004   | Digital-Eingang 4                            | Steuerklemme [4],<br>30 Möglichkeiten (siehe<br>nächster Abschnitt) | Nein      | 03<br>[CF2]  | 13<br>[USP]  |         |
|        | IN-TM 4 USP                                  |                                                                     |           | [01 2]       | [001]        |         |
| C204   | Digital-Eingang 4<br>(2. Parameter-<br>satz) | Steuerklemme [4],<br>30 Möglichkeiten (siehe<br>nächster Abschnitt) | Nein      | 03<br>[CF2]  | 13<br>[USP]  | _       |
|        | 2IN-TM 4 USP                                 |                                                                     |           |              |              |         |
| C005   | Digital-Eingang 5                            | Steuerklemme [5],                                                   | Nein      | 18           | 09           | _       |
|        | IN-TM 5 2CH                                  | 30 Möglichkeiten (siehe nächster Abschnitt)                         |           | [RS]         | [2CH]        |         |
| C205   | Digital-Eingang 5<br>(2. Parameter-<br>satz) | Steuerklemme [5],<br>30 Möglichkeiten (siehe<br>nächster Abschnitt) | Nein      | 18<br>[RS]   | 09<br>[2CH]  | _       |
|        | 2IN-TM 5 2CH                                 |                                                                     |           |              |              |         |

Die Schaltfunktionen der Eingänge sind programmierbar und auf jeden Eingang anzuwenden. Die Eingänge können wahlweise als Öffner oder Schließer programmiert werden (Ausnahme: Eingang RS-Reset kann nicht als Öffner programmiert werden). In der Werkseinstellung sind alle Eingänge als Schließer programmiert.

|        | "C" Funk              | Einst.                            | Grundwerte |              |              |         |
|--------|-----------------------|-----------------------------------|------------|--------------|--------------|---------|
| FktNr. | Name /<br>SRW Anzeige | Beschreibung                      | im<br>RUN  | -FEF<br>(EU) | -FU<br>(USA) | Einheit |
| C011   | Digital-Eingang 1 S/Ö | 2 Wahlmöglichkeiten:              | Nein       | 00           | 00           | _       |
|        | O/C-1 NO              | 00Schließer [NO]<br>01Öffner [NC] |            |              |              |         |
| C012   | Digital-Eingang 2 S/Ö | 2 Wahlmöglichkeiten:              | Nein       | 00           | 00           | _       |
|        | O/C-2 NO              | 00Schließer [NO]<br>01Öffner [NC] |            |              |              |         |
| C013   | Digital-Eingang 3 S/Ö | 2 Wahlmöglichkeiten:              | Nein       | 00           | 00           | _       |
|        | O/C-3 NO              | 00Schließer [NO]<br>01Öffner [NC] |            |              |              |         |
| C014   | Digital-Eingang 4 S/Ö | 2 Wahlmöglichkeiten:              | Nein       | 00           | 01           | _       |
|        | O/C-4 NC              | 00Schließer [NO]<br>01Öffner [NC] |            |              |              |         |
| C015   | Digital-Eingang 5 S/Ö | 2 Wahlmöglichkeiten:              | Nein       | 00           | 00           | _       |
|        | O/C-5 NO              | 00Schließer [NO]<br>01Öffner [NC] |            |              |              |         |



**HINWEIS:** Eingang RS-Reset (18) kann nicht als Öffner programmiert werden.

# Übersicht Belegung Eingangsklemmen

Jeder der fünf Eingangsklemmen kann eine Funktion aus der folgenden Tabelle zugeordnet werden. Bei Programmierung einer Option (C001 - C005) zu Steuerungszwecken, wird die entsprechende Funktion dem Eingang zugeordnet. Jeder Funktion ist ein Symbol/Kurzzeichen zugeordnet. Diese werden zur Kennzeichnung der Funktion benutzt. Das Kurzzeichen für den Startbefehl "Rechtslauf" ist [FW] (ForWard Run). Die Kennzeichnung auf der Steuerklemmleiste ist einfach 1, 2, 3, 4 oder 5. Für Beispiele in schematischer Darstellung werden in dieser Anleitung Kurzzeichen (wie [FW]) verwendet. Die Kürzel der Parameter C011 - C015 bestimmen den Schaltzustand des Eingangs (Schließer oder Öffner).

**Übersichtstabelle Eingangsfunktionen –** Diese Tabelle zeigt alle Eingangsfunktionen auf einen Blick. Genauere Beschreibungen dieser Funktionen, ähnliche Parameter und Einstellungen und Verdrahtungsbeispiele werden in Kapitel "Verwendung Eingangsklemmen" auf Seite 4–9 beschrieben.

| Übersichtstabelle Eingangsfunktionen |                         |                        |                                              |                                                                            |  |  |
|--------------------------------------|-------------------------|------------------------|----------------------------------------------|----------------------------------------------------------------------------|--|--|
| Options-<br>Nr.                      | Symbol                  | Funktionsname          | Beschreibung                                 |                                                                            |  |  |
| 00                                   | FW                      | Rechtslauf             | ON                                           | Start Rechtslauf                                                           |  |  |
|                                      |                         |                        | OFF                                          | Stop Rechtslauf                                                            |  |  |
| 01                                   | RV                      | Linkslauf              | ON                                           | Start Linkslauf                                                            |  |  |
|                                      |                         |                        | OFF                                          | Stop Linkslauf                                                             |  |  |
| 02                                   | CF1 *1                  | Festfrequenz, Bit 0    | ON                                           | Binär kodierte Geschwindigkeitsanwahl, Bit 0                               |  |  |
|                                      | (LSB)                   |                        | OFF                                          | Binär kodierte Geschwindigkeitsanwahl, Bit 0                               |  |  |
| 03                                   | CF2 Festfrequenz, Bit 1 |                        | ON                                           | Binär kodierte Geschwindigkeitsanwahl, Bit 1                               |  |  |
|                                      |                         | OFF                    | Binär kodierte Geschwindigkeitsanwahl, Bit 1 |                                                                            |  |  |
| 04                                   | CF3                     | Festfrequenz, Bit 2    | ON                                           | Binär kodierte Geschwindigkeitsanwahl, Bit 2                               |  |  |
|                                      |                         |                        | OFF                                          | Binär kodierte Geschwindigkeitsanwahl, Bit 2                               |  |  |
| 05                                   | CF4                     |                        |                                              | Binär kodierte Geschwindigkeitsanwahl, Bit 3                               |  |  |
|                                      |                         | (MSB)                  | OFF                                          | Binär kodierte Geschwindigkeitsanwahl, Bit 3                               |  |  |
| 06                                   | 06 JG Tipp-Betrieb      |                        | ON                                           | Start Tipp-Betrieb, Motor läuft mit der unter A038 programmierten Frequenz |  |  |
|                                      |                         |                        | OFF                                          | Stop Tipp-Betrieb                                                          |  |  |
| 07                                   | DB                      | Gleichstrom-<br>bremse | ON                                           | Aktivierung der Gleichstrombremse während Runterlauf                       |  |  |
|                                      |                         |                        | OFF                                          | Gleichstrombremse wird nicht angesprochen                                  |  |  |

| Übersichtstabelle Eingangsfunktionen |        |                         |      |                                                                                                                                                                                                                     |  |
|--------------------------------------|--------|-------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Options-<br>Nr.                      | Symbol | Funktionsname           |      | Beschreibung                                                                                                                                                                                                        |  |
| 08                                   | SET    | 2. Parametersatz        | ON   | Umschaltung auf 2. Parametersatz. Umschaltung ist nur bei Stop des Umrichters möglich                                                                                                                               |  |
|                                      |        |                         | OFF  | Verwendung 1. (Haupt-) Parametersatz                                                                                                                                                                                |  |
| 09                                   | 2CH    | 2. Zeitrampe            | ON   | Verwendung 2. Hoch-/Runterlaufzeit                                                                                                                                                                                  |  |
|                                      |        |                         | OFF  | Verwendung Standard Hoch-/Runterlaufzeiten                                                                                                                                                                          |  |
| 11                                   | FRS    | Reglersperre            | ON   | Motorspannung wird sofort abgeschaltet,<br>Motor läuft frei aus                                                                                                                                                     |  |
|                                      |        |                         | OFF  | Motor läuft an der Rampe herunter                                                                                                                                                                                   |  |
| 12                                   | EXT    | Störung extern          | ON   | Bei Ansteuerung wird eine Störmeldung ausgelöst (E12)                                                                                                                                                               |  |
|                                      |        |                         | OFF  | Keine Anzeige einer Störmeldung                                                                                                                                                                                     |  |
| 13                                   | USP    | Wiederanlauf-<br>sperre | ON   | Kein Wiederanlauf bei anstehendem Start-<br>Befehl nach Netz Aus/Ein                                                                                                                                                |  |
|                                      |        |                         | OFF  | Wiederanlauf bei anstehendem Start-Befehl nach Netz Aus/Ein                                                                                                                                                         |  |
| 15                                   | SFT    | Parameter-<br>sicherung | ON   | Schützt eingegebene Parameter vor Verlust durch Überschreiben                                                                                                                                                       |  |
|                                      |        |                         | OFF  | Parameter können überschrieben werden                                                                                                                                                                               |  |
| 16                                   | AT     | Sollwerteingang         | ON   | Umschaltung auf Stromeingang [OI]                                                                                                                                                                                   |  |
|                                      |        | OI aktiv (4-20mA)       | OFF  | Spannungseingang [O] ist aktiv                                                                                                                                                                                      |  |
| 18                                   | RS     | Reset                   | ON   | Quittierung einer Störung, Zurücksetzen des<br>Störmelderelais, Abschaltung des Motoraus-<br>gangs während des Betriebs                                                                                             |  |
|                                      |        |                         | OFF  | Normalbetrieb                                                                                                                                                                                                       |  |
| 19                                   | 19 PTC | Kaltleitereingang       | ANLG | Eingang [5] kann unter Funktion C005 als<br>Kaltleitereingang programmiert werden.<br>Bezugspotential ist [L]. Umrichter überprüft<br>Übertemperatur, gibt eine Störmeldung aus<br>und schaltet den Motorausgang ab |  |
|                                      |        |                         | OPEN | Ein fehlender Kaltleiter gibt eine Störmeldung (E35) aus, der Motorausgang ist abgeschaltet                                                                                                                         |  |
| 20                                   | STA    | 3-Draht Impulsstart     | ON   | Startet Motor durch Impuls                                                                                                                                                                                          |  |
|                                      |        |                         | OFF  | Keine Änderung des Motor-Status                                                                                                                                                                                     |  |
| 21                                   | STP    | 3-Draht Impulsstopp     | ON   | Stoppt Motor durch Impuls                                                                                                                                                                                           |  |
|                                      |        |                         | OFF  | Keine Änderung des Motor-Status                                                                                                                                                                                     |  |

| Übersichtstabelle Eingangsfunktionen |                                 |                                                  |                    |                                                                                                                                                                              |                                                                 |  |
|--------------------------------------|---------------------------------|--------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|
| Options-<br>Nr.                      | Symbol                          | Funktionsname                                    |                    | Beschreibung                                                                                                                                                                 |                                                                 |  |
| 22                                   | 22 F/R 3-Draht<br>Drehric       |                                                  | ON                 | Drehrichtungsanwahl: ON = FWD (Rechtslauf) Ein Wechsel während des Betriebs lässt den Motor runterlaufen, bevor die Richtung geändert wird                                   |                                                                 |  |
|                                      |                                 |                                                  | OFF                | Drehrichtungsanwahl: OFF = REV (Links-<br>lauf) Ein Wechsel während des Betriebs lässt<br>den Motor runterlaufen, bevor die Richtung<br>geändert wird                        |                                                                 |  |
| 23                                   | PID                             | PID-Regler                                       | ON                 | PID-Regler ausgeschaltet (A071=01).                                                                                                                                          |                                                                 |  |
|                                      |                                 | Ein/Aus                                          | OFF                | PID-Regler eingeschaltet (A071=01).                                                                                                                                          |                                                                 |  |
| 24                                   | PIDC                            | PID-Regler I-Anteil                              | ON                 | Zurücksetzen des I-Anteils vom PID-Regler                                                                                                                                    |                                                                 |  |
|                                      |                                 | zurücksetzen                                     | OFF                | Kein Einfluss auf die Regelung                                                                                                                                               |                                                                 |  |
| 27                                   | UP                              | UP                                               | Motorpotentiometer | ON                                                                                                                                                                           | Erhöhen der aktuellen Ausgangsfrequenz                          |  |
|                                      |                                 | "Frequenz<br>erhöhen"                            | OFF                | Normalbetrieb                                                                                                                                                                |                                                                 |  |
| 28                                   | DWN                             | Motorpotentiometer<br>"Frequenz<br>verringern"   | ON                 | Verringern der aktuellen Ausgangsfrequenz                                                                                                                                    |                                                                 |  |
|                                      |                                 |                                                  | OFF                | Normalbetrieb                                                                                                                                                                |                                                                 |  |
| 29                                   | UDC                             | Motorpotentiometer<br>"Frequenz<br>zurücksetzen" | ON                 | Löscht den Frequenzspeicher. Nach Netz-<br>Ein läuft der Motor mit 0Hz oder der minima-<br>len Betriebsfrequenz (A061). Zur Aktivierung<br>muss der Parameter C101 = 00 sein |                                                                 |  |
|                                      |                                 |                                                  | OFF                | Frequenzspeicher wird nicht verändert                                                                                                                                        |                                                                 |  |
| 31                                   | OPE Steuerung übe<br>Bedienfeld | Steuerung über<br>Bedienfeld                     | ON                 | Bei Ansteuerung dieses Eingangs erfolgt<br>Start/Stop (A002) und die Sollwertvorgabe<br>(A001) über das eingebaute Bedienfeld bzw.<br>über die Fernbedienung                 |                                                                 |  |
|                                      |                                 |                                                  | OFF                | Ausgangsfrequenz wird durch A001 und Start/Stop-Befehl durch A002 ausgeführt                                                                                                 |                                                                 |  |
| 50                                   | ADD                             | ADD Freque                                       | Frequenzaddition   | ON                                                                                                                                                                           | Addiert den Wert von Parameter A145 zur Ausgangsfrequenz hinzu. |  |
|                                      |                                 |                                                  | OFF                | Addiert den Wert von Parameter A145 zur Ausgangsfrequenz nicht hinzu.                                                                                                        |                                                                 |  |
| 51                                   | F-TM                            | Terminal-Modus                                   | ON                 | Bei Ansteuerung dieses Eingangs wird die<br>Ausgangsfrequenz und Start/Stop-Befehl<br>ausschließlich über die Steuerklemmen<br>angesprochen                                  |                                                                 |  |
|                                      |                                 |                                                  | OFF                | Bedienung über Steuerklemmen und Tastatur möglich                                                                                                                            |                                                                 |  |

| Übersichtstabelle Eingangsfunktionen |                                 |                |                  |                                                                                                                                |                                              |
|--------------------------------------|---------------------------------|----------------|------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Options-<br>Nr.                      | Symbol                          | Funktionsname  | Beschreibung     |                                                                                                                                |                                              |
| 52                                   | RDY Verkürzung<br>Reaktionszeit |                | ON               | Verkürzt bei Start die Reaktionszeit des<br>Umrichters zum Aufbau der Ausgangsspan-<br>nung. Aktivierung der Funktion mit b151 |                                              |
|                                      |                                 |                | OFF              | Reaktionszeit des Umrichters bei start wird nicht verkürzt                                                                     |                                              |
| 53                                   | 3 SP-SET                        |                | 2. Parametersatz | ON                                                                                                                             | Umschaltung auf 2. Parametersatz bei Betrieb |
|                                      |                                 | bei Betrieb    | OFF              | Verwendung des 1. (Haupt-) Parametersatzes. Umschaltung nur im Stillstand möglich.                                             |                                              |
| 255                                  | _                               | keine Funktion | ON               | (Eingang nicht berücksichtigt)                                                                                                 |                                              |
|                                      |                                 |                | OFF              | (Eingang nicht berücksichtigt)                                                                                                 |                                              |

Hinweis 1: Bei Verwendung der Festfrequenzen CF1 - CF4 ändern Sie während des Betriebs nicht den Wert von Parameter F001. Bei notwendiger Kontrolle in diesem Fall den Parameter d001 verwenden.

## Konfiguration Ausgangsklemmen

Der Umrichter bietet die Möglichkeit der Konfiguration von digitalen und analogen Ausgängen. Eine Übersicht befindet sich in der unteren Tabelle.

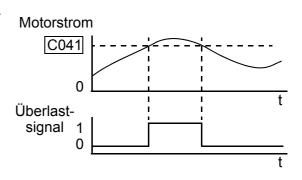
|        | "C" Funkt                     | Einst.                                                                  | Grundwerte |                      |                      |         |
|--------|-------------------------------|-------------------------------------------------------------------------|------------|----------------------|----------------------|---------|
| FktNr. | Name /<br>SRW Anzeige         | Beschreibung                                                            | im<br>RUN  | -FEF<br>(EU)         | -FU<br>(USA)         | Einheit |
| C021   | Digital-Ausgang 11            |                                                                         | Nein       | 01<br>[FA1]          | 01<br>[FA1]          | _       |
|        | OUT-TM 11 FA1                 |                                                                         |            | [, , , , ]           | [, , , , ]           |         |
| C022   | Digital-Ausgang 12            | 11 programmierbare<br>Funktionen für digitale                           | Nein       | 00<br>[RUN]          | 00<br>[RUN]          | _       |
|        | OUT-TM 12 RUN                 | Ausgänge (siehe                                                         |            | [IXON]               | [IXOIV]              |         |
| C026   | Relais-Ausgang<br>AL0-AL1-AL2 | nächster Abschnitt)                                                     | Nein       | 05<br>[AL]           | 05<br>[AL]           | _       |
|        | OUT-TM RY AL                  |                                                                         |            |                      |                      |         |
| C028   | Analog-Ausgang AM             | 2 Ausgabemöglichkeiten:                                                 | Nein       | 00                   | 00                   | _       |
|        | AM-KIND F                     | 00Frequenzistwert<br>01Motorstrom<br>(siehe nach nächstem<br>Abschnitt) |            | Frequenz-<br>istwert | Frequenz-<br>istwert |         |

Die digitalen Ausgänge stehen an den Steuerklemmen [11], [12] und das Alarm-Relais an den Klemmen [AL0], [AL1] und [AL2] zur Verfügung. Die "Open-Collector"-Ausgänge [11] und [12] sind grundsätzlich als Schließer programmiert. Durch Logikumkehr können sie jedoch auch als Öffner programmiert werden. Auch beim Alarm-Relais ist eine Logikumkehr möglich.

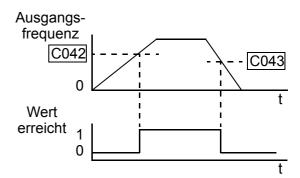
|        | "C" Funk                                         | Einst.                                                      | Grundwerte |              |              |         |
|--------|--------------------------------------------------|-------------------------------------------------------------|------------|--------------|--------------|---------|
| FktNr. | Name /<br>SRW Anzeige                            | Beschreibung                                                | im<br>RUN  | -FEF<br>(EU) | -FU<br>(USA) | Einheit |
| C031   | Digital-Ausgang 11<br>Schließer / Öffner         | 2 Wahlmöglichkeiten:<br>00 Schließer (NO)                   | Nein       | 00           | 00           | _       |
|        | O/C-11 NO                                        | 01 Öffner (NC)                                              |            |              |              |         |
| C032   | Digital-Ausgang 12<br>Schließer                  | 2 Wahlmöglichkeiten:<br>00 Schließer (NO)                   | Nein       | 00           | 00           | _       |
|        | O/C-12 NO                                        | 01 Schließer (NO)                                           |            |              |              |         |
| C036   | Störmelderelais<br>AL0-AL2<br>Schließer / Öffner | 2 Wahlmöglichkeiten:<br>00 Schließer (NO)<br>01 Öffner (NC) | Nein       | 01           | 01           | _       |
|        | O/C-RY NC                                        |                                                             |            |              |              |         |

**Übersichtstabelle Ausgangsfunktionen –** Diese Tabelle zeigt alle Ausgangsfunktionen auf einen Blick (Steuerklemmen [11], [12]). Genauere Beschreibungen dieser Funktionen, ähnliche Parameter und Einstellungen und Verdrahtungsbeispiele werden in Kapitel "Verwendung Ausgangsklemmen" auf Seite 4–34 beschrieben.

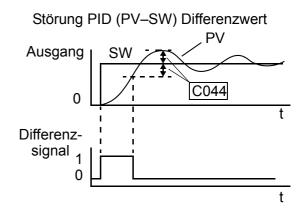
| Übersichtstabelle Ausgangsfunktionen |                          |                                   |                |                                                                                                                                                                                  |                                                                                           |
|--------------------------------------|--------------------------|-----------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Options-<br>Nr.                      | Symbol                   | Funktionsname                     |                | Beschreibung                                                                                                                                                                     |                                                                                           |
| 00                                   | RUN                      | Betrieb                           | ON             | Meldung Umrichter im Betrieb                                                                                                                                                     |                                                                                           |
|                                      |                          |                                   | OFF            | Umrichter nicht im Betrieb                                                                                                                                                       |                                                                                           |
| 01                                   | 01 FA1 Sollwert erreicht |                                   | ON             | Meldung bei Erreichen des eingestellten<br>Sollwerts                                                                                                                             |                                                                                           |
|                                      |                          |                                   | OFF            | Sollwert unterhalb des eingestellten Sollwerts                                                                                                                                   |                                                                                           |
| 02                                   | FA2                      | Sollwert überschritten            | ON             | Meldung bei Überschreiten/Erreichen der unter<br>C042 eingestellten Frequenzen im Hochlauf                                                                                       |                                                                                           |
|                                      |                          |                                   | OFF            | Meldung bei Unterschreiten/Erreichen der unter C043 eingestellten Frequenzen im Runterlauf                                                                                       |                                                                                           |
| 03                                   | OL                       | Überlast-Alarm                    | ON             | Meldung, wenn der Motorstrom den unter<br>Funktion C041 eingestellten Wert überschreitet                                                                                         |                                                                                           |
|                                      |                          |                                   | OFF            | Motorstrom unterhalb des eingestellten Wertes                                                                                                                                    |                                                                                           |
| 04 OD                                | OD                       | OD Regelabweichung überschritten  | ON             | Meldung wenn die Abweichung zwischen dem eingestellten Sollwert und dem zurückgeführten Istwert größer ist als der unter C044 eingestellte Wert (nur bei PID-Regler aktiv: A071) |                                                                                           |
|                                      |                          |                                   | OFF            | Keine Abweichung im eingestellten Bereich                                                                                                                                        |                                                                                           |
| 05                                   | AL                       | Störung                           | ON             | Meldung einer Störung                                                                                                                                                            |                                                                                           |
|                                      |                          |                                   | OFF            | Keine Störung vorhanden                                                                                                                                                          |                                                                                           |
| 06                                   | Dc                       | Unterbrechung<br>Analog-Eingang   | ON             | Meldung, wenn der Spannungseingang [O] kleiner als der Wert b082 oder der Stromeingang [OI] kleiner als 4mA (Signalunterbrechung)                                                |                                                                                           |
|                                      |                          |                                   | OFF            | Keine Signalunterbrechung                                                                                                                                                        |                                                                                           |
| 07                                   | FBV                      | FBV                               | Istwertüberwa- | ON                                                                                                                                                                               | Meldung, wenn der Sollwert kleiner als die<br>Grenze des rückgeführten Signals ist (C053) |
|                                      |                          | chung                             | OFF            | Meldung, wenn das rückgeführte Signal die obere<br>Grenze des Sollwertes überschreitet (C052) und<br>bei Wechsel von Betriebs- in den Stop-Modus                                 |                                                                                           |
| 08                                   | NDc                      | Netzwerkfehler                    | ON             | Meldung, wenn die Netzwerkkommunikation (Watchdog) gestört ist (C077)                                                                                                            |                                                                                           |
|                                      |                          |                                   | OFF            | Netzwerkkommunikation in Ordnung                                                                                                                                                 |                                                                                           |
| 09                                   | LOG                      | Logische Verknüp-<br>fung erfüllt | ON             | Meldung, wenn das Ergebnis der logischen Verknüpfung logisch "1" ist (C0143)                                                                                                     |                                                                                           |
|                                      |                          |                                   | OFF            | Meldung, wenn das Ergebnis der logischen Verknüpfung logisch "0" ist (C0143)                                                                                                     |                                                                                           |


|                                                | Übersichtstabelle Ausgangsfunktionen |                           |     |                                                                                                         |  |  |  |  |
|------------------------------------------------|--------------------------------------|---------------------------|-----|---------------------------------------------------------------------------------------------------------|--|--|--|--|
| Options- Nr. Symbol Funktionsname Beschreibung |                                      |                           |     |                                                                                                         |  |  |  |  |
| 10                                             | OPDc                                 | Kommunikation abgebrochen | ON  | Meldung, wenn die Kommunikation, bei Verwendung eines optionalen Kommunikationsmoduls, unterbrochen ist |  |  |  |  |
|                                                |                                      |                           | OFF | Kommunikation mit optionalen Kommuni-<br>kationsmodul in Ordnung                                        |  |  |  |  |

**Übersichtstabelle Analogfunktionen –** Diese Tabelle zeigt die Funktionen für die Darstellung des Ausgangswertes für den Spannungsausgang [AM], die in Parameter C028 eingestellt wurden. Mehr Informationen zur Anwendung und Einstellung des Analog-Ausganges [AM] steht in Kapitel "Analog-Ausgang" auf Seite 4–53.


|                 | Übersichtstabelle Analogfunktionen |                                                |                              |  |  |  |  |
|-----------------|------------------------------------|------------------------------------------------|------------------------------|--|--|--|--|
| Options-<br>Nr. | Funktionsname                      | Beschreibung                                   | Bereich                      |  |  |  |  |
| 00              | Frequenzistwert                    | Aktueller Frequenzistwert                      | 0 bis max.<br>Frequenz in Hz |  |  |  |  |
| 01              | Motorstrom                         | Motorstrom (% des maximalen Ausgangsnennstrom) | 0 bis 200%                   |  |  |  |  |

# Parameteranpassung Ausgangsfunktionen


Die folgenden Parameter wirken in Verbindung mit den konfigurierten Ausgangsfunktionen. Die Überlast-Schwelle (C041) stellt den Motorstrom so ein, dass ein Überlast-Signal [OL] gesetzt wird. Der Bereich liegt zwischen 0% - 200% des Umrichternennstroms. Diese Funktion dient zur Erzeugung eines Ausgangs zur Früherkennung, ohne dabei eine Störmeldung auszugeben oder eine Einschränkung des Motorstroms zu bewirken.



Der unter dieser Funktion programmierte Ausgang [FA1] oder [FA2] schaltet, wenn im Hochlauf [FA1] die hier programmierte Frequenz (C042) überschritten bzw. im Runterlauf [FA2] die hier programmierte Frequenz (C043) unterschritten wurde.



Der unter dieser Funktion programmierte Ausgang [OD] schaltet, wenn bei aktiviertem PID-Regler die Abweichung zwischen Soll- und Istwert den hier eingegebenen Wert übersteigt (C044).



|        | "C" Funk                                              | tionen                                                                   | Einst.    | G            | rundwe       | erte    |
|--------|-------------------------------------------------------|--------------------------------------------------------------------------|-----------|--------------|--------------|---------|
| FktNr. | Name /<br>SRW Anzeige                                 | Beschreibung                                                             | im<br>RUN | -FEF<br>(EU) | -FU<br>(USA) | Einheit |
| C041   | Überlast-Alarm<br>Schwelle (OL)                       | Einstellung Überlast-<br>schwelle zwischen 0 und<br>200%                 | Nein      |              | U-<br>strom  | Α       |
|        | OL LVL 001,60A                                        | (0 - 2 x FU-Nennstrom)                                                   |           |              |              |         |
| C241   | Überlast-Alarm<br>Schwelle (OL)<br>(2. Parametersatz) | Einstellung Überlast-<br>schwelle zwischen 0 und<br>200%                 | Nein      | _            | U-<br>strom  | А       |
|        | 2OL LVL 001,60A                                       | (0 - 2 x FU-Nennstrom)                                                   |           |              |              |         |
| C042   | Frequenz überschritten im Hochlauf (FA2, FA3)         | Schaltet Ausgang FA2 bei<br>Frequenzüberschreitung ein<br>0,0 - 400,0 Hz | Nein      | 0,0          | 0,0          | Hz      |
|        | ARV ACC 0000,0Hz                                      |                                                                          |           |              |              |         |
| C043   | Frequenz unterschritten im Runterlauf (FA2, FA3)      | Schaltet Ausgang FA2 bei<br>Frequenzunterschreitung<br>aus               | Nein      | 0,0          | 0,0          | Hz      |
|        | ARV DEC 0000,0Hz                                      | 0,0 - 400,0 Hz                                                           |           |              |              |         |
| C044   | PID-Regler<br>Abweichung                              | Schaltet einen Ausgang bei<br>Überschreiten der program-                 | Nein      | 3,0          | 3,0          | %       |
|        | ARV PID 003,0%                                        | mierten Soll-Ist-Differenz<br>0,0 - 100%, Auflösung 0,1%                 |           |              |              |         |
| C052   | PID-Regler /<br>Obere Istwert-<br>Begrenzung          | Ausschalten PID-Regler bei Istwertüberschreitung 0,0 - 100,0%            | Nein      | 100,0        | 100,0        | %       |
|        | PID LtU 0100,0%                                       |                                                                          |           |              |              |         |
| C053   | PID-Regler /<br>Untere Istwert-<br>Begrenzung         | Einschalten PID-Regler bei<br>Istwertunterschreitung<br>0,0 - 100,0%     | Nein      | 0,0          | 0,0          | %       |
|        | PID LtL 0000,0%                                       |                                                                          |           |              |              |         |

# **Einstellungen Netzwerkkommunikation**

Die Tabelle enthält Parameter die zur Konfiguration der seriellen Schnittstelle (RS485) nötig sind. Die Einstellungen beeinflussen die Kommunikation zwischen dem Umrichter und einer digitalen Bedieneinheit (wie SRW-0EX) oder einem ModBus-Netzwerk (Vernetzte Umrichter-Anwendungen). Die Einstellungen können, um Zuverlässigkeit zu garantieren, nicht über das Netzwerk editiert werden. Siehe Kapitel "ModBus Netzwerk Kommunikation" auf Seite B–1 für weitere Informationen bezüglich Steuerung und Überwachung des Umrichters durch ein Netzwerk.

|        | "C" Funk                                                | tionen                                                                                                                                                                                | Einst.    | G            | rundwe       | erte    |
|--------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|--------------|---------|
| FktNr. | Name /<br>SRW Anzeige                                   | Beschreibung                                                                                                                                                                          | im<br>RUN | -FEF<br>(EU) | -FU<br>(USA) | Einheit |
| C071   | Baudrate COM BAU 4800                                   | 3 Wahlmöglichkeiten:<br>04 4800 bps<br>05 9600 bps<br>06 19200 bps                                                                                                                    | Nein      | 06           | 04           | baud    |
| C072   | Adresse COM ADR 00001                                   | Einstellung der Umrichter-<br>Adresse für das Netzwerk<br>1 - 32                                                                                                                      | Nein      | 1            | 1            | _       |
| C074   | Parität  COM PRTY NON                                   | 3 Wahlmöglichkeiten:<br>00 keine Parität<br>01 Gerade Parität<br>02 Ungerade Parität                                                                                                  | Nein      | 00           | 00           | _       |
| C075   | Stopbits COM STP 1BIT                                   | Bereich 1 - 2                                                                                                                                                                         | Nein      | 1            | 1            | _       |
| C076   | Übertragungsfehler COM ESIct None                       | Verhalten bei<br>Kommunikationsstörung:<br>00 Störung (Fehler E60)<br>01 Runterlauf bis Stop und<br>Störung (Fehler E60)<br>02 Inaktiv<br>03 Freier Auslauf<br>04 Runterlauf bis Stop | Nein      | 02           | 02           |         |
| C077   | Unterbrechung<br>Übertragungsfehler<br>COM ETIM 000,00s | Einstellung der Kommuni-<br>kationszeit (Watchdog)<br>0,00 - 99,99 s                                                                                                                  | Nein      | 0,00         | 0,00         | Ø       |
| C078   | Wartezeit COM Wait 00000ms                              | Wartezeit des Umrichters<br>vor Übertragung einer<br>erhaltenen Nachricht<br>0 - 1000 ms                                                                                              | Nein      | 0            | 0            | ms      |

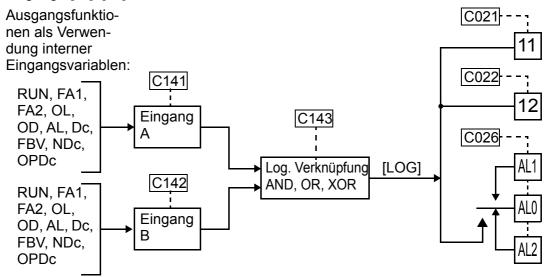
# Analogabgleich

Diese Tabelle zeigt Funktionen zum Abgleich der Analogausgangs-Signale.

|        | "C" Funktionen                          |                                                      |           | G            | rundwe       | erte    |
|--------|-----------------------------------------|------------------------------------------------------|-----------|--------------|--------------|---------|
| FktNr. | Name /<br>SRW Anzeige                   | Beschreibung                                         | im<br>RUN | -FEF<br>(EU) | -FU<br>(USA) | Einheit |
| C081   | Abgleich Analog-<br>Eingang O (0-10V)   | Abgleich Analogsignal 0-<br>10V zur Ausgangsfrequenz | Ja        | 100,0        | 100,0        | %       |
|        | O-ADJ 0100,0%                           |                                                      |           |              |              |         |
| C082   | Abgleich Analog-<br>Eingang OI (4-20mA) | Abgleich Analogsignal<br>4-20mA zur Ausgangs-        | Ja        | 100,0        | 100,0        | %       |
|        | OI-ADJ 0100,0%                          | frequenz                                             |           |              |              |         |
| C085   | Abgleich<br>Kaltleitereingang           | Bereich 0,0 - 200,0%                                 | Ja        | 100,0        | 100,0        | %       |
|        | PTC Adj 0100,0%                         |                                                      |           |              |              |         |
| C086   | Offset Analog-Ausgang<br>AM (0-10V)     | Bereich 0,0 - 10,0V                                  | Ja        | 0,0          | 0,0          | V       |
|        | AM-OFFST 0000,0V                        |                                                      |           |              |              |         |



**HINWEIS:** Bei Wiederherstellung der Werkseinstellungen die Einstellungen unter C081 - C086 nicht zurücksetzen.


# **Sonstige Funktionen**

Diese Tabelle enthält weitere Funktionen, die in anderen Gruppen nicht beschrieben werden.

|        | "C" Funk                                  | tionen                                                                                        | Einst.    | G            | rundwe       | erte    |
|--------|-------------------------------------------|-----------------------------------------------------------------------------------------------|-----------|--------------|--------------|---------|
| FktNr. | Name /<br>SRW Anzeige                     | Beschreibung                                                                                  | im<br>RUN | -FEF<br>(EU) | -FU<br>(USA) | Einheit |
| C091   | Debug-Modus                               | Anzeige Debug-Parameter                                                                       | Ja        | 00           | 00           |         |
|        | DBG Slct OFF                              | (NICHT verändern!):<br>00 inaktiv<br>01 aktiv                                                 |           |              |              |         |
| C101   | Motorpotentiometer-<br>Sollwert speichern | Speicherung Sollwert<br>Motorpotentiometer nach                                               | Nein      | 00           | 00           | _       |
|        | UP/DWN NO-STR                             | Netz-Aus:<br>00 nicht speichern<br>01 speichern                                               |           |              |              |         |
| C102   | Reset-Signal                              | Ausführung RESET-Signal                                                                       | Nein      | 00           | 00           | _       |
|        | RS Slet ON                                | RST]: 00 ansteigende Flanke 01 abfallende Flanke 02 ansteigende Flanke, aktiv nur bei Störung |           |              |              |         |

## Ausgangslogik und Zeitverhalten

**Einfache Funktionen logischer Verknüpfungen –** Der Umrichter hat die Möglichkeit logische Funktionen zu realisieren. Es können alle 10 Möglichkeiten der Ausgänge für die beiden Eingangsvariablen (A und B) verwendet werden. Anschließend konfigurieren Sie die beiden Eingangsvariablen mit den gewünschten logischen Verknüpfungen UND, ODER oder XOR (Exklusiv-ODER). Das Kurzzeichen dieses neuen Ausgangs ist [LOG]. Verwenden Sie die Parameter C021, C022 oder C026, um mit dem Ergebnis die Ausgänge [11], [12] oder das Alarm-Relais zu steuern.



Diese Tabelle zeigt alle 4 Eingangskombinationen und das Ergebnis der entsprechenden Verknüpfung.

|   | Eingangs-<br>zustand |     | [LOG] Ausgangszustand |     |  |  |
|---|----------------------|-----|-----------------------|-----|--|--|
| Α | В                    | UND | ODER                  | XOR |  |  |
| 0 | 0                    | 0   | 0                     | 0   |  |  |
| 0 | 1                    | 0   | 1                     | 1   |  |  |
| 1 | 0                    | 0   | 1                     | 1   |  |  |
| 1 | 1                    | 1   | 1                     | 0   |  |  |

|        | "C" Funktionen                    |                              |           | Grundwerte   |              |         |
|--------|-----------------------------------|------------------------------|-----------|--------------|--------------|---------|
| FktNr. | Name /<br>SRW Anzeige             | Beschreibung                 | im<br>RUN | -FEF<br>(EU) | -FU<br>(USA) | Einheit |
| C141   | Logische Verknüpfung<br>Eingang A |                              | Nein      | 00           | 00           |         |
|        | LogicOut1 RUN                     | 10 programmierbare Funk-     |           |              |              |         |
| C142   | Logische Verknüpfung<br>Eingang B | tionen für digitale Ausgänge | Nein      | 01           | 01           | _       |
|        | LogicOut2 FA1                     |                              |           |              |              |         |

|        | "C" Funktionen                    |                                                                                                   |           | G            | rundwe       | erte    |
|--------|-----------------------------------|---------------------------------------------------------------------------------------------------|-----------|--------------|--------------|---------|
| FktNr. | Name /<br>SRW Anzeige             | Beschreibung                                                                                      | im<br>RUN | -FEF<br>(EU) | -FU<br>(USA) | Einheit |
| C143   | Logische Funktionen  LogicOPE AND | Auswahl logischer<br>Verknüpfungen:<br>00 UND (A UND B)<br>01 ODER (A ODER B)<br>02 XOR (A XOR B) | Nein      | 00           | 00           | _       |

**Ein-/Ausschaltverzögerung Digital-Ausgang -** Die Digital-Ausgänge [11], [12] und das Alarm-Relais haben konfigurierbare Verzögerungszeiten. Jeder Ausgang kann Einschalt- und/oder Ausschaltverzögert betrieben werden. Die Verzögerungszeiten sind von 0,1 - 100,0 Sekunden einstellbar. Diese Möglichkeiten sind nützlich bei Anwendungen, die eine exakte Zeitabstimmung erfordern.

|        | "C" Funkt                                    | tionen                | Einst.    | G            | rundwe       | erte     |
|--------|----------------------------------------------|-----------------------|-----------|--------------|--------------|----------|
| FktNr. | Name /<br>SRW Anzeige                        | Beschreibung          | im<br>RUN | -FEF<br>(EU) | -FU<br>(USA) | Einheit  |
| C144   | Digital-Ausgang 11 / Einschaltverzögerung    | Bereich 0,0 - 100,0 s | Nein      | 0,0          | 0,0          | S        |
|        | DLAY 11 0000,0s                              |                       |           |              |              |          |
| C145   | Digital-Ausgang 11 /<br>Ausschaltverzögerung | Bereich 0,0 - 100,0 s | Nein      | 0,0          | 0,0          | S        |
|        | HOLD 11 0000,0s                              | 1                     |           |              |              | <u> </u> |
| C146   | Digital-Ausgang 12 /<br>Einschaltverzögerung | Bereich 0,0 - 100,0 s | Nein      | 0,0          | 0,0          | S        |
|        | DLAY 12 0000,0s                              |                       |           |              |              |          |
| C147   | Digital-Ausgang 12 /<br>Ausschaltverzögerung | Bereich 0,0 - 100,0 s | Nein      | 0,0          | 0,0          | S        |
|        | HOLD 12 0000,0s                              |                       |           |              |              |          |
| C148   | Relais-Ausgang /<br>Einschaltverzögerung     | Bereich 0,0 - 100,0 s | Nein      | 0,0          | 0,0          | S        |
|        | DLAY RY 0000,0s                              |                       |           |              |              |          |
| C149   | Relais-Ausgang /<br>Ausschaltverzögerung     | Bereich 0,0 - 100,0 s | Nein      | 0,0          | 0,0          | S        |
|        | HOLD RY 0000,0s                              |                       |           |              |              |          |



**HINWEIS:** Bei Verwendung der Ausschaltverzögerung (C145, C147, C149 > 0,0s), wird die Einschaltverzögerung durch einen Reset [RS] etwas beeinflusst. Normalerweise (ohne Verzögerungszeit) wird bei einem Reset [RS] der Motorausgang und die logischen Ausgänge unverzüglich und gleichzeitig abgeschaltet. Nach einem Reset [RS] und einer verwendeten Ausschaltverzögerung bleibt der Ausgang noch für ca. 1s eingeschaltet.

# **Gruppe "H": Motorkonstanten**

Die Gruppe "H" konfiguriert den Umrichter auf die entsprechende Motor-Charakteristik. In Parameter H003 und H004 müssen Werte bezüglich der Motorleistung und Anzahl der Motorpole eingegeben werden. Parameter H006 ist werkseingestellt. Sollen die Parameter auf Werkseinstellung eingestellt werden, gehen Sie nach der Vorgehensweise in "Wiederherstellen der Werkseinstellungen" auf Seite 6–9 vor. Mit A044 wird, wie in der Zeichnung dargestellt, die Art der Frequenzregelung ausgewählt.

#### 

|        | "H" Fun                                          | ktionen                                                      | Einst.    | G               | rundwe       | erte    |
|--------|--------------------------------------------------|--------------------------------------------------------------|-----------|-----------------|--------------|---------|
| FktNr. | Name /<br>SRW Anzeige                            | Beschreibung                                                 | im<br>RUN | -FEF<br>(EU)    | -FU<br>(USA) | Einheit |
| H003   | Motorleistung                                    | 12 Wahlmöglichkeiten:<br>0,2 / 0,4 / 0,55 / 0,75 / 1,1 / 1,5 | Nein      |                 | spre-<br>end | kW      |
|        | AUX K 0.4 kW                                     | / 2,2 / 3,0 / 4,0 / 5,5 / 7,5 / 11                           |           |                 | ng des       |         |
| H203   | Motorleistung<br>(2. Parametersatz)              | 12 Wahlmöglichkeiten:<br>0,2/0,4/0,55/0,75/1,1/1,5           | Nein      | Nein Umrichters | kW           |         |
|        | 2AUXK 0.4 kW                                     | / 2,2 / 3,0 / 4,0 / 5,5 / 7,5 / 11                           |           |                 |              |         |
| H004   | Motorpolzahl                                     | 4 Wahlmöglichkeiten:                                         | Nein      | 4               | 4            | Pole    |
|        | AUX P 4p                                         | 2/4/6/8                                                      |           |                 |              |         |
| H204   | Motorpolzahl<br>(2. Parametersatz)               | 4 Wahlmöglichkeiten:<br>2 / 4 / 6 / 8                        | Nein      | 4               | 4            | Pole    |
|        | 2AUXP 4p                                         |                                                              |           |                 |              |         |
| H006   | Motorstabilisierungs-<br>konstante               | Motorkonstante<br>Bereich 0 - 255                            | Ja        | 100             | 100          | _       |
|        | AUX KCD 100                                      |                                                              |           |                 |              |         |
| H206   | Motorstabilisie-<br>rungskonstante (2.<br>Psatz) | Motorkonstante<br>Bereich 0 - 255                            | Ja        | 100             | 100          | _       |
|        | 2AUXKCD 100                                      |                                                              |           |                 |              |         |

# **Gruppe "P": BUS-Kommunikation**

Die Gruppe "P" ermöglicht mittels einer optionalen Kommunikationskarte die Kommunikation über ein BUS-System zwischen Umrichter und SPS. Die Parameter der Gruppe "P" werden nur bei gesteckter Optionskarte angezeigt.

|        | "P" Fun                                                 | ktionen                                                                                                                                                                                               | Einst.    | G            | rundwe       | erte    |
|--------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|--------------|---------|
| FktNr. | Name /<br>SRW Anzeige                                   | Beschreibung                                                                                                                                                                                          | im<br>RUN | -FEF<br>(EU) | -FU<br>(USA) | Einheit |
| P044   | Einstellzeit Kommu-<br>nikationsverlust TIMER 01.00s    | Bei Verlust der Kommunikation über die eingestellte Zeit hinaus, werden die digitalen Ausgänge unter Parameter C021, C022 und der Relais-Ausgang unter Parameter C026 aktiviert Breich 0,00 - 99,99 s | Nein      | 1,0          | 1,0          | S       |
| P045   | Verhalten bei<br>Kommunikations-<br>fehler<br>T-OUT FTP | Verhalten bei<br>Kommunikationsfehler:<br>00 Störung (Fehler E70)<br>01 Runterlauf bis Stop und<br>Störung (Fehler E70)<br>02 Inaktiv<br>03 Freier Auslauf<br>04 Runterlauf bis Stop                  | Nein      | 01           | 01           | _       |
| P046   | Polling Ausgänge O-AS-INS 021                           | Abfrage der Ausgänge:<br>3 Wahlmöglichkeiten:<br>20 / 21 / 100                                                                                                                                        | Nein      | 21           | 21           | _       |
| P047   | Polling Eingänge O-AS-INS 071                           | Abfrage der Eingänge:<br>3 Wahlmöglichkeiten:<br>70 / 71 / 101                                                                                                                                        | Nein      | 71           | 71           | _       |
| P048   | Verhalten bei nicht aktivem BUS  IDLE FTP               | Verhalten des Umrichters bei<br>nicht aktivem BUS:<br>00 Störung (Fehler E70)<br>01 Runterlauf bis Stop und<br>Störung (Fehler E70)<br>02 Inaktiv<br>03 Freier Auslauf<br>04 Runterlauf bis Stop      | Nein      | 01           | 01           | _       |
| P049   | Motorpolzahl über<br>BUS<br>P 00P                       | Einstellung der Motorpolzahl<br>über BUS<br>Bereich 0 - 38 (nur gerade<br>Werte)                                                                                                                      | Nein      | 0            | 0            | _       |



**HINWEIS:** Parameter der Gruppe "P" werden nur bei gesteckter Optionskarte angezeigt.

| In diesem Kapitel                                           | Seite |
|-------------------------------------------------------------|-------|
| — Einleitung                                                | 2     |
| <ul> <li>Verbindung zur SPS und anderen Geräten.</li> </ul> | 4     |
| Beschreibung der Steuersignale                              | 6     |
| — Übersicht Steuerfunktionen                                | 7     |
| — Verwendung Eingangsklemmen                                | 9     |
| — Verwendung Ausgangsklemmen                                | 36    |
| — Signal "Kommunikation abgebrochen"                        | 53    |
| — Analog-Ausgang                                            | 56    |
| — PID-Regler                                                | 57    |
| — Konfiguration für Mehrmotorenbetrieb                      | 60    |

# **Einleitung**

Im vorherigen Kapitel 3 gibt es eine Übersicht über alle programmierbaren Funktionen des Umrichters. Es wird empfohlen zuerst die Funktionen zu lesen, um sich damit vertraut zu machen. Dieses Kapitel wird Ihre Kenntnisse über folgende Funktionen erweitern:

- 1. Ähnliche Funktionen Einige Parameter wirken aufeinander oder beeinflussen die Einstellungen von anderen Funktionen. Dieses Kapitel zeigt die "notwendigen Einstellungen" für eine programmierbare Funktion und dient als Vergleichsliste und Hilfe, welche Funktionen sich gegenseitig beeinflussen.
- **2. Steuerklemmen** Einige Funktionen benötigen das Eingangssignal einer Steuerelektronik oder programmierte Ausgänge einer Steuerung.
- **3. Elektrische Verbindungen** Dieses Kapitel beschreibt die Verbindung zu anderen elektrischen Geräten.
- **4. PID-Regler** Der Umrichter L200 hat einen eingebauten PID-Regler der die optimale Ausgangsfrequenz zur Steuerung eines externen Prozesses berechnet. Dieses Kapitel zeigt alle Parameter und Ein-/Ausgangsklemmen die für den PID-Regler benötigt werden.
- **5. Mehrmotorenbetrieb** Der Umrichter L200 kann mit zwei oder mehreren Motoren betrieben werden. Dieses Kapitel zeigt dafür die elektrischen Anschlüsse und die dazugehörigen Parameter für den Mehrmotorenbetrieb.

Die Inhalte in diesem Kapitel machen es leichter, die wichtigen Funktionen herauszufinden und zu benutzen. Die Installation wurde, einschließlich Einschalttest und Motorenlauf, in Kapitel 2 beschrieben. Dieses Kapitel beginnt an diesem Punkt und zeigt wie der Umrichter ein Teil einer großen Steuerung oder Automationssystems sein kann.

#### Vorsichtsmaßnahmen beim Betrieb

Bevor Sie fortfahren lesen Sie bitte diese Vorsichtsmaßnahmen.



**ACHTUNG:** Die Kühlkörperrippen können sich erhitzen. Berührung vermeiden. Andernfalls besteht Verbrennungsgefahr.



**ACHTUNG:** Durch Bedienung des Umrichters kann die Geschwindigkeit leicht geändert werden. Prüfen Sie die Möglichkeiten und Grenzwerte des Motors bzw. der Maschine, bevor er in Betrieb geht. Andernfalls besteht Personengefahr.



**ACHTUNG:** Wenn der Motor an einer Frequenz betrieben wird, die höher ist als der Standardwert des Umrichters (50Hz/60Hz), vergewissern Sie sich beim entsprechenden Hersteller, ob Motor und Maschine den Anforderungen standhalten. Der Motorbetrieb mit Frequenzen die vom Standard abweichen, darf nur mit Zustimmung erfolgen. Andernfalls besteht die Gefahr der Gerätezerstörung und/oder -beschädigung.

## Warnungen beim Betrieb

Bevor Sie fortfahren lesen Sie bitte diese Warnungen.



**WARNUNG:** Schalten Sie den Umrichter nur bei geschlossenem Gehäuse ein und öffnen Sie dieses nicht während des Betriebs. Andernfalls besteht Gefahr eines Stromschlages.



**WARNUNG:** Arbeiten Sie stets mit trockenen Händen. Andernfalls besteht Gefahr eines Stromschlages.



**WARNUNG:** Berühren Sie bei eingeschaltetem Umrichter, auch bei stillstehendem Motor, nicht die Anschlussklemmen. Andernfalls besteht Gefahr eines Stromschlages.



**WARNUNG:** Im Wiederanlaufmodus kann der Motor nach einer Störung plötzlich wieder anlaufen. Bevor Sie die Maschine öffnen, vergewissern Sie sich, dass der Umrichter ausgeschaltet ist. Andernfalls besteht Verletzungsgefahr.



**WARNUNG:** Bei kurzzeitigem Netzausfall kann der Umrichter bei Wiederkehr der Netzspannung und anliegendem Start-Befehl wieder anlaufen. Besteht bei Wiederanlauf Personengefahr, schalten Sie das Gerät über einen Schalter aus, so dass diese Möglichkeit nicht mehr besteht. Andernfalls besteht Verletzungsgefahr.



**WARNUNG:** Die Stop-Taste ist nur wirksam, wenn sie auch aktiviert ist. Vergewissern Sie sich, dass die Stop-Taste getrennt vom NOT-AUS geschaltet wird. Andernfalls besteht Personengefahr.



**WARNUNG:** Nach Quittieren einer Störmeldung und anstehendem Start-Befehl läuft der Umrichter automatisch an. Störungsquittierung erst nach Wegnahme des Start-Befehls. Andernfalls besteht Verletzungsgefahr.



**WARNUNG:** Berühren Sie keine spannungsführenden Teile im Gerät bzw. hinterlassen Sie keine leitenden Teile. Andernfalls besteht Gefahr eines Stromschlages und/oder Brandgefahr.



**WARNUNG:** Bei anstehendem Start-Befehl und Einschalten der Netzversorgung läuft der Motor automatisch an, dies kann zu Beschädigungen führen. Vor Einschalten der Netzversorgung darf kein Start-Befehl anstehen.



**WARNUNG:** Bei deaktivierter Stop-Taste wird der Umrichter weder gestoppt noch kann eine Störmeldung quittiert werden.



**WARNUNG:** Verwenden Sie einen separaten hardwaremäßigen NOT-AUS-Schalter, um die Sicherheit in Ihrer Anwendung zu garantieren.

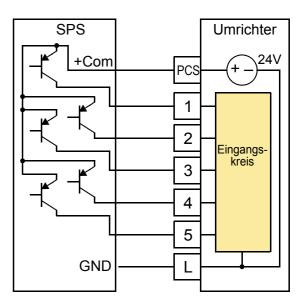
# Verbindung zur SPS und anderen Geräten

Hitachi Umrichter können für viele Anwendungen eingesetzt werden. Während der Inbetriebnahme ist die Bedientastatur des Umrichters (oder eine andere Programmiereinheit) sehr nützlich. Danach bekommt der Umrichter seine Steuerbefehle hauptsächlich von den Steuerklemmen oder über die serielle Schnittstelle eines anderen Steuergerätes. In einer einfachen Anwendung (drehzahlgeregeltes Förderband) ist ein Start/Stop-Schalter und ein Potentiometer zur Steuerung ausreichend. Bei anspruchsvolleren Anwendungen wird eine *programmierbare Steuerung* (SPS) mit verschiedenen Signalen benötigt.

Es ist unmöglich alle Anwendungsfälle zu beschreiben. Es ist ausreichend für das anzuschließende Gerät die elektrischen Eigenschaften zu wissen. Dieser und folgende Abschnitte der Steuerfunktionen helfen Ihnen, diese Geräte an den Umrichter anzuschließen.

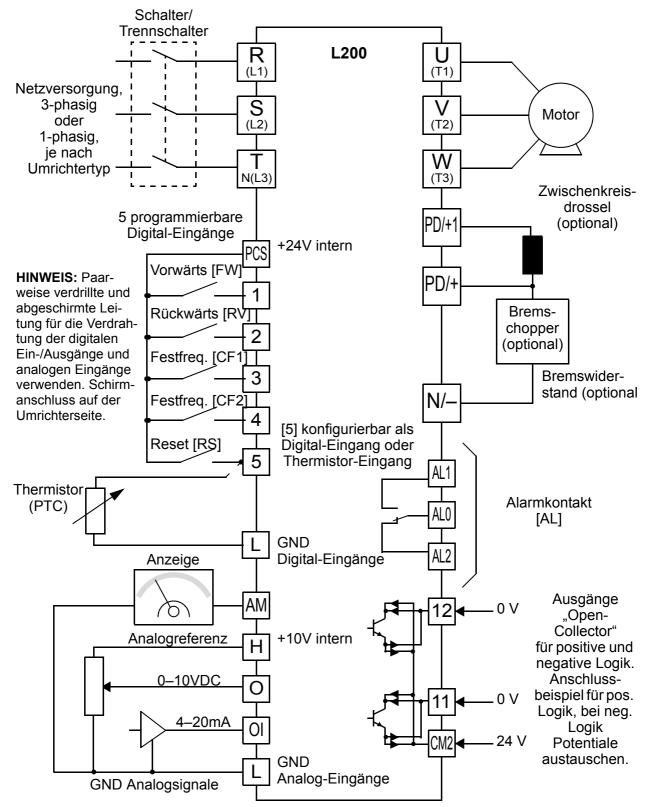


**ACHTUNG:** Der Umrichter oder andere Geräte können beschädigt werden, wenn die maximalen Strom- bzw. Spannungswerte überschritten werden.

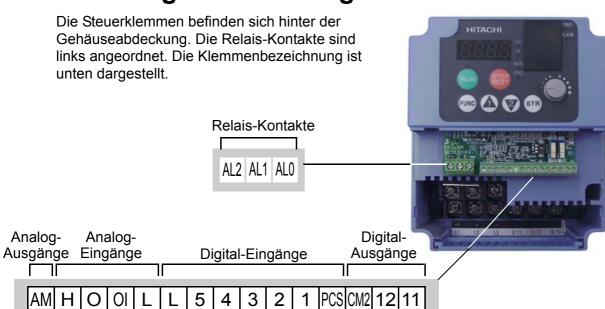

Die Verbindungen zwischen Umrichter und anderen externen Geräten beziehen sich auf die elektrischen Ein-/Ausgangseigenschaften beider Seiten (rechte Darstellung). Die Eingänge können sowohl Ausgänge mit PNP- oder NPN-Logik von einem externen Gerät (SPS) verarbeiten. Hier werden die elektrischen Komponenten jeder I/O-Steuerklemme beschrieben. In einigen Fällen wird eine externe 24V-Spannungsquelle für den Signalaustausch benötigt.

Um Beschädigungen zu vermeiden, lassen Sie die Anwendung langsam laufen. Weiterhin empfehlen wir die Erstellung eines Stromlaufplans.

Nach Erstellung der Zeichnung:


- Prüfung der Strom- und Spannungsanschlüsse.
- **2.** Prüfung des Schaltzustandes ("active high"/"active low") jeder Verbindung.
- Prüfung des Regelbereichs für analoge Verbindungen und den Skalierungsfaktor zwischen Eingang und Ausgang.
- **4.** Versuchen Sie nachzuvollziehen was passieren kann, wenn bei Geräten die Spannung ausfällt bzw. eingeschaltet wird.






## Verdrahtungsbeispiel

Die untere Darstellung zeigt ein allgemeines Beispiel für den Anschluss der Steuerklemmen, zusätzliche Spannungsversorgungen und Motorverdrahtung entsprechend Kapitel 2. Die für die Anwendung richtige Auswahl der benötigten Klemmen ist Ziel dieses Kapitels.



# Beschreibung der Steuersignale



Beschreibung der Steuerklemmen:

| Anschluss                  | Beschreibung              | Werte                                                                                                                                                     |
|----------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| [PCS]                      | +24V für Digital-Eingänge | 24VDC, 30 mA max. (NICHT mit L kurzschließen)                                                                                                             |
| [1], [2], [3],<br>[4], [5] | Digital-Eingänge          | 27VDC max. (mit PCS oder ext. Stromversorgung gegen L verwenden) Thermistorauswertung (Kaltleiteranschluss) nur mit Digital-Eingang 5 (Klemme 5) möglich! |
| [L] *1/*2                  | 0V                        | 0V-Potential (beide Klemmen L sind intern miteinander verbunden)                                                                                          |
| [11], [12]                 | Digital-Ausgänge          | 50mA max. Strom für EIN<br>27 VDC max. Spannung für AUS                                                                                                   |
| [CM2]                      | GND für Digital-Ausgänge  | 100 mA: Summe Strom für Anschlüsse [11] - [12]                                                                                                            |
| [AM]                       | Spannung Analog-Ausgang   | 0 bis 10VDC, 1mA max.                                                                                                                                     |
| [OI]                       | Analog-Eingang, Strom     | Bereich 4 bis 19,6 mA, 20 mA nominell, Eingangsimpedanz 250 $\Omega$                                                                                      |
| [O]                        | Analog-Eingang, Spannung  | Bereich 0 bis 9,8 VDC, 10VDC nominell, Eingangsimpedanz 10 $k\Omega$                                                                                      |
| [H]                        | +10V Referenzspannung     | 10VDC nominell, 10 mA max.                                                                                                                                |
| [AL0]                      | Relais, Mittenkontakt     | Kontaktbelastung                                                                                                                                          |
| [AL1] *3                   | Relais, Schließer         | max. ohmsche Last: 250 VAC, 2,5A/30 VDC, 3,0A max. induktive Last: 250 VAC, 0,2A/30 VDC, 0,7A                                                             |
| [AL2] *3                   | Relais, Öffner            | min. Last: 100 VAC, 10mA/5 VDC, 100mA                                                                                                                     |

**Hinweis 1:** Die Klemmen [L] sind intern miteinander verbunden.

Hinweis 2: Empfehlung: rechter Anschluss [L] für Digital-Eingänge, linker Anschluss

[L] für Analog-Signale.

**Hinweis 3:** Grundeinstellung Öffner. Schaltzustand umkehrbar. Siehe Seite 4–37.

# Übersicht Steuerfunktionen

# Steuereingänge

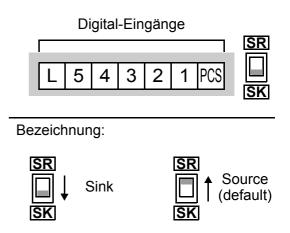
Inhaltsverzeichnis der Steuereingänge mit Seitenangabe.

|        | Steuereingänge |                                            |       |  |  |  |
|--------|----------------|--------------------------------------------|-------|--|--|--|
| Symbol | Code           | Name                                       | Seite |  |  |  |
| FW     | 00             | Rechtslauf                                 | 4–12  |  |  |  |
| RV     | 01             | Linkslauf                                  | 4–12  |  |  |  |
| CF1    | 02             | Festfrequenz, Bit 0 (LSB)                  | 4–13  |  |  |  |
| CF2    | 03             | Festfrequenz, Bit 1                        | 4–13  |  |  |  |
| CF3    | 04             | Festfrequenz, Bit 2                        | 4–13  |  |  |  |
| CF4    | 05             | Festfrequenz, Bit 3                        | 4–13  |  |  |  |
| JG     | 06             | Tipp-Betrieb                               | 4–15  |  |  |  |
| DB     | 07             | Gleichstrombremse                          | 4–16  |  |  |  |
| SET    | 08             | 2. Parametersatz                           | 4–17  |  |  |  |
| 2CH    | 09             | 2. Zeitrampe                               | 4–18  |  |  |  |
| FRS    | 11             | Reglersperre                               | 4–19  |  |  |  |
| EXT    | 12             | Störung extern                             | 4–20  |  |  |  |
| USP    | 13             | Wiederanlaufsperre                         | 4–21  |  |  |  |
| SFT    | 15             | Parametersicherung                         | 4–22  |  |  |  |
| AT     | 16             | Sollwerteingang OI aktiv (4-20mA)          | 4–23  |  |  |  |
| RS     | 18             | Reset                                      | 4–24  |  |  |  |
| TH     | 19             | Kaltleitereingang                          | 4–25  |  |  |  |
| STA    | 20             | 3-Draht Impulsstart                        | 4–26  |  |  |  |
| STP    | 21             | 3-Draht Impulsstopp                        | 4–26  |  |  |  |
| F/R    | 22             | 3-Draht Drehrichtung                       | 4–26  |  |  |  |
| PID    | 23             | PID-Regler Ein/Aus                         | 4–28  |  |  |  |
| PIDC   | 24             | PID-Regler I-Anteil zurücksetzen           | 4–28  |  |  |  |
| UP     | 27             | Motorpotentiometer "Frequenz erhöhen"      | 4–29  |  |  |  |
| DWN    | 28             | Motorpotentiometer "Frequenz verringern"   | 4–29  |  |  |  |
| UDC    | 29             | Motorpotentiometer "Frequenz zurücksetzen" | 4–29  |  |  |  |
| OPE    | 31             | Steuerung über Bedienfeld                  | 4–31  |  |  |  |
| ADD    | 50             | Frequenzaddition                           | 4–32  |  |  |  |
| F-TM   | 51             | Terminal-Modus                             | 4–33  |  |  |  |
| RDY    | 52             | Quick-Start-Funktion                       | 4–34  |  |  |  |
| SP-SET | 53             | Anwahl 2. Parametersatz bei Betrieb        | 4–35  |  |  |  |

# Betrieb und Überwachung

# Steuerausgänge

Inhaltsverzeichnis der Steuerausgänge mit Seitenangabe.

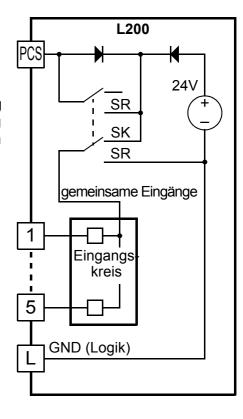

| Steuerausgänge |      |                                     |       |  |  |
|----------------|------|-------------------------------------|-------|--|--|
| Symbol         | Code | Name                                | Seite |  |  |
| RUN            | 00   | Betrieb                             | 4–39  |  |  |
| FA1            | 01   | Sollwert erreicht                   | 4–40  |  |  |
| FA2            | 02   | Sollwert überschritten              | 4–40  |  |  |
| OL             | 03   | Überlast-Alarm                      | 4–42  |  |  |
| OD             | 04   | Regelabweichung überschritten       | 4–43  |  |  |
| AL             | 05   | Störung                             | 4–44  |  |  |
| Dc             | 06   | Unterbrechung Analog-Eingang        | 4–46  |  |  |
| FBV            | 07   | PID-Regler untere Istwertbegrenzung | 4–47  |  |  |
| NDc            | 08   | Netzwerkfehler                      | 4–50  |  |  |
| LOG            | 09   | Logische Verknüpfung erfüllt        | 4–51  |  |  |
| OPDc           | 10   | Kommunikation abgebrochen           | 4–53  |  |  |

# Verwendung Eingangsklemmen

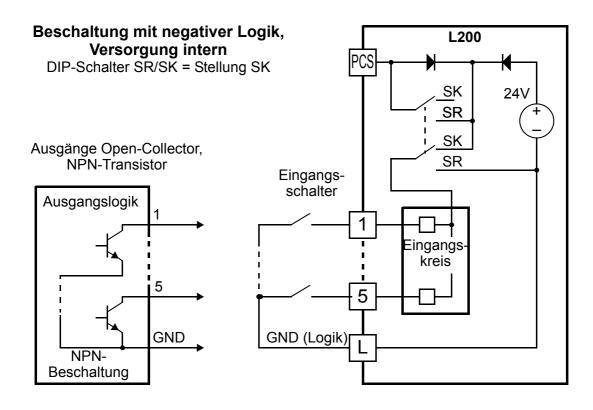
Die Klemmen [1], [2], [3], [4] und [5] sind identisch und zur Programmierung von digitalen Eingängen zu verwenden. Die Eingangsbeschaltung kann mit der internen +24V oder einer externen Netzversorgung erfolgen. Dieser Abschnitt beschreibt die Eingangsbeschaltung und den richtigen Anschluss von Schaltern bzw. Transistorausgängen von anderen Baugruppen.

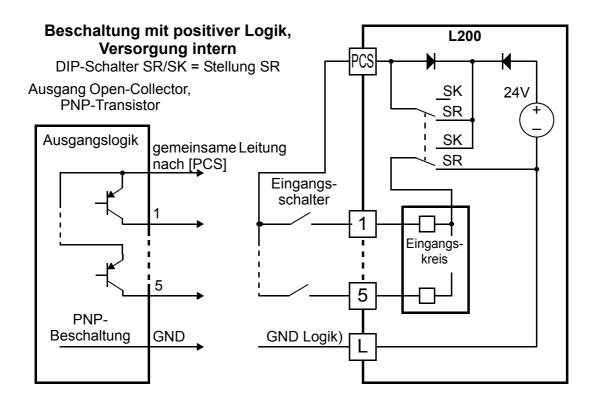
Der Umrichter L200 hat wählbare Eingänge für negative- oder positive-Logik. Diese Bezeichnung bezieht sich auf den Anschluss der externen Schaltgruppen - entweder negativ schaltend oder positiv schaltend.

Der Umrichter hat einen DIP-Schalter zur Auswahl von "Sink" (neg. Logik)- oder "Source" (pos. Logik)-Eingängen. Zur Einstellung die Gehäuseabdeckung entfernen. Der Schalter "SR/SK" befindet sich rechts neben der Steuerklemmleiste. Verwechseln Sie den Schalter NICHT mit den beiden nebenliegenden größeren Schaltern. Die Bezeichnungen (SR/SK) befinden sich über und unter dem Schalter.

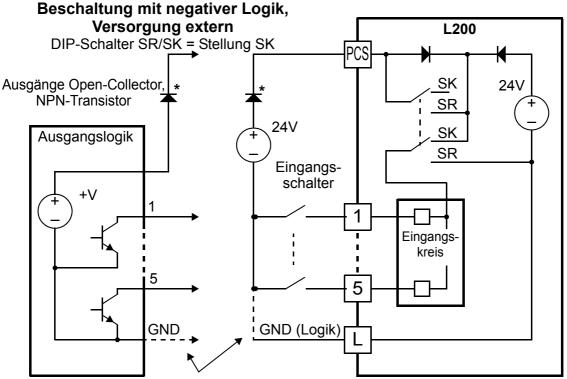




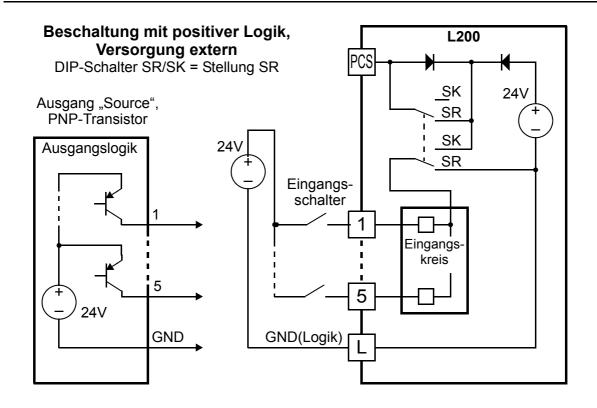


**ACHTUNG:** Umschalten des DIP-Schalter "SR/SK" nur im ausgeschalteten Zustand des Umrichters. Andernfalls kann dies zu Beschädigungen führen.


[PCS] Anschlussklemme - Die Klemme [PCS] (Programmable Control System) wird so bezeichnet, um verschiedene Geräte an den digitalen Eingängen des Umrichters anzuschließen. Stellung oben des Schalters "SR/SK" bedeutet, Nutzung der *internen* +24V-Spannungsversorgung oder eine externe Spannungsversorgung. Stellung unten des Schalters "SR/SK" bedeutet, das gegen "L" (GND) geschaltet wird.

Die Verdrahtungsdarstellungen im Folgenden beschreiben alle vier Kombinationen der "Sink"und "Source"-Eingänge unter Verwendung einer internen oder externen Spannungsversorgung.




Die Darstellungen zeigen die Eingangsverdrahtungen bei Verwendung der internen +24V-Versorgung. Der Anschluss wird mit einfachen Eingangsschaltern oder mit der Ausgangslogik anderer Baugruppen gezeigt. Beachten Sie dabei, dass der Anschluss der Klemme [L] nur bei Baugruppen mit Transistorausgängen notwendig ist. Auf richtige Einstellung des Schalters "SR/SK" achten.






Die Darstellungen zeigen die Eingangsverdrahtungen bei Verwendung einer externen Versorgung. Beim oberen Verdrahtungsbeispiel sollte eine Diode zur externen Versorgung verwendet werden. Dies vermeidet Komplikationen bei versehentlicher falscher Schaltereinstellung von "SR/SK". Auf richtige Einstellung des Schalters "SR/SK" achten.



\* Hinweis: Wenn der Anschluss GND der externen Versorgung mit [L] verbunden ist, verwenden Sie die oberen Dioden.



#### Rechts-/Linkslauf-Steuerbefehle:

brechung des Klemmenanschlusses oder anderweitig fehlender Eingangsspannung.

Wird der Startbefehl über eine Steuerklemme [FW] ausgeführt, startet (High) bzw. stoppt (Low) der Umrichter den Motor im Rechtslauf. Wird der Startbefehl über eine Steuerklemme [RV] ausgeführt, startet (High) bzw. stoppt (Low) der Umrichter den Motor im Linkslauf.

| Param<br>Nr.                                                                                                                                                                                                                                       | Symbol | Name                            | Status                      | Beschreibung                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------|-----------------------------|-----------------------------------------------------------------|
| 00                                                                                                                                                                                                                                                 | FW     | Rechtslauf                      | ON                          | Umrichter im RUN-Modus, Motor Rechtslauf                        |
|                                                                                                                                                                                                                                                    |        |                                 | OFF                         | Umrichter im STOP-Modus, Motor steht                            |
| 01                                                                                                                                                                                                                                                 | RV     | Linkslauf                       | ON                          | Umrichter im RUN-Modus, Motor Linkslauf                         |
|                                                                                                                                                                                                                                                    |        |                                 | OFF                         | Umrichter im STOP-Modus, Motor steht                            |
| Mögliche<br>Eingänge                                                                                                                                                                                                                               |        | C001, C002, C003, C004,<br>C005 |                             | Beispiel (Grundwerte Eingangskonfiguration - siehe Seite 3–43): |
| Einstellu                                                                                                                                                                                                                                          | ngen:  | A002 = 01                       |                             | RV FW                                                           |
| <ul> <li>HINWEIS:</li> <li>Bei gleichzeitig aktivem Startsignal für Rechtsund Linkslauf, befindet sich der Umrichter im STOP-Modus.</li> <li>Bei Verwendung eines Öffners für die Funktion [FW] oder [RV], startet der Motor bei Unter-</li> </ul> |        |                                 | L   5   4   3   2   1   PCS |                                                                 |



**HINWEIS:** Der Parameter F004, Drehrichtung, legt fest, ob die RUN-Taste den Motor im Rechts- oder Linkslauf drehen läßt. Diese Funktion hat keinen Einfluss auf Befehle [FW] und [RV] über die Steuerklemmen.

Siehe I/O Beschreibung auf Seite 4–6



**WARNUNG:** Bei eingeschalteter Spannung und aktivem Startbefehl beginnt der Motor zu drehen. Dies ist gefährlich. Bevor die Spannung eingeschaltet wird, vergewissern Sie sich, dass kein Startbefehl aktiv ist.

## Festfrequenzen

Der Umrichter kann bis zu 16 unterschiedliche Festfrequenzen abspeichern. Das Ansprechen erfolgt durch die Programmierung von 4 Digital-Eingängen. Sie sind binär-codiert und haben die Bezeichnung CF1 - CF4. Es kann jeder der 5 programmierbaren Eingänge dafür verwendet werden. Werden nicht alle benötigt, können auch entsprechend weniger verwendet werden.



**Hinweis:** Wird nur eine bestimmte Anzahl von Festfrequenzen benötigt, beginnen Sie in der Tabelle mit dem niederwertigsten Bit: CF1, CF2 etc.

Das untere Beispiel mit acht Geschwindigkeiten zeigt die Konfiguration der Eingänge CF1 - CF3 zur Änderung der Motorgeschwindigkeiten.



| Fest-    |     | Eingang |     |     |  |  |  |  |
|----------|-----|---------|-----|-----|--|--|--|--|
| frequenz | CF4 | CF3     | CF2 | CF1 |  |  |  |  |
| 0        | 0   | 0       | 0   | 0   |  |  |  |  |
| 1        | 0   | 0       | 0   | 1   |  |  |  |  |
| 2        | 0   | 0       | 1   | 0   |  |  |  |  |
| 3        | 0   | 0       | 1   | 1   |  |  |  |  |
| 4        | 0   | 1       | 0   | 0   |  |  |  |  |
| 5        | 0   | 1       | 0   | 1   |  |  |  |  |
| 6        | 0   | 1       | 1   | 0   |  |  |  |  |
| 7        | 0   | 1       | 1   | 1   |  |  |  |  |
| 8        | 1   | 0       | 0   | 0   |  |  |  |  |
| 9        | 1   | 0       | 0   | 1   |  |  |  |  |
| 10       | 1   | 0       | 1   | 0   |  |  |  |  |
| 11       | 1   | 0       | 1   | 1   |  |  |  |  |
| 12       | 1   | 1       | 0   | 0   |  |  |  |  |
| 13       | 1   | 1       | 0   | 1   |  |  |  |  |
| 14       | 1   | 1       | 1   | 0   |  |  |  |  |
| 15       | 1   | 1       | 1   | 1   |  |  |  |  |

**HINWEIS:** Geschwindigkeit 0 wird mit Parameter A020 eingestellt.

| Param<br>Nr. | Symbol | Name                | Status | Beschreibung                          |
|--------------|--------|---------------------|--------|---------------------------------------|
| 02           | CF1    | Festfrequenz, Bit 0 | ON     | Binär-codierte Geschwindigkeit, Bit 0 |
|              |        | (LSB)               | OFF    | Binär-codierte Geschwindigkeit, Bit 0 |
| 03           | CF2    | Festfrequenz, Bit 1 | ON     | Binär-codierte Geschwindigkeit, Bit 1 |
|              |        |                     | OFF    | Binär-codierte Geschwindigkeit, Bit 1 |
| 04           | CF3    | Festfrequenz, Bit 2 | ON     | Binär-codierte Geschwindigkeit, Bit 2 |
|              |        |                     | OFF    | Binär-codierte Geschwindigkeit, Bit 2 |
| 05           | CF4    | , ,                 | ON     | Binär-codierte Geschwindigkeit, Bit 3 |
|              |        | (MSB)               | OFF    | Binär-codierte Geschwindigkeit, Bit 3 |

| Param<br>Nr.                                                         | Symbol                                                                        | Name                                                                                                                                                                                      | Status                                                                                                                   | Beschreibung                                         |  |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|
| Mögliche<br>Eingänge                                                 | Mögliche C001, C002, C003, C004, C005                                         |                                                                                                                                                                                           | Beispiel (Einige Eingänge müssen konfiguriert werden, einige sind in der Grundeinstellung vorhanden - siehe Seite 3–43): |                                                      |  |
| Einstellur                                                           | ngen:                                                                         | F001, A001 = 02,<br>A020 bis A035                                                                                                                                                         |                                                                                                                          | (MSB) (LSB)  CF4 CF3 CF1                             |  |
| speiche<br>nächste<br>chert ist<br>• Bei Fes<br>(60Hz) s<br>quenz (A | grammieru<br>rn Sie dies<br>programr<br>kein Wert<br>ffrequenze<br>sind, ände | ung der Festfrequenzen,<br>se vorher ab bevor Sie die<br>mieren. Wird nicht abgespei-<br>t eingestellt.<br>en die größer als 50Hz<br>ern Sie auch die Maximalfre-<br>nit dieser Wert auch |                                                                                                                          | L 5 4 3 2 1 PCS    I   I   I   I   I   I   I   I   I |  |

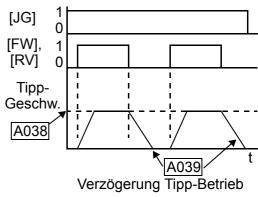
Bei Verwendung von Festfrequenzen, kann die derzeitige Frequenz mit der Monitorfunktion d001 zu jeder Zeit eines Festfrequenzbetriebs überwacht werden.



**HINWEIS:** Bei Verwendung von Festfrequenzeinstellungen durch CF1 bis CF4 lassen Sie nicht den Parameter F001 anzeigen oder ändern gar den Wert dieses Parameters im RUN-Betrieb. Wenn es notwendig ist den Wert von F001 während des RUN-Betriebs zu überprüfen, verwenden Sie anstatt F001 den Parameter d001.

Zwei Möglichkeiten der Geschwindigkeitsspeicherung in den Parametern A020 - A035:

- 1. Standardprogrammierung über Tastatur:
  - Auswahl eines Parameters von A020 bis A035.
  - **b.** Drücken der Taste ( zur Anzeige des Parameterwertes.


  - **d.** Verwendung der Taste (STR) um den Wert abzuspeichern.
- 2. Programmierung durch Schalter CF. Geschwindigkeitseinstellung durch folgende Schritte:
  - a. Ausschalten des RUN-Betriebs (STOP-Modus).
  - **b.** Einschalten der gewünschten Eingänge für die Festfrequenz. Anzeige des Wertes F001 in der Bedieneinheit.
  - **c.** Einstellung der gewünschten Ausgangsfrequenz mit den Tasten /\tau\ und \vec{2}.
  - **d.** Durch Drücken der Taste (STR) Frequenz abspeichern. Danach wird die Ausgangsfrequenz der Festfrequenz "n" unter F001 angezeigt.
  - **e.** Durch Drücken der Taste we überprüfen das die angezeigte Frequenz der eingestellten entspricht.
  - f. Wiederholen Sie die Schritte 2. a) bis 2. e), um andere Frequenzen als Festfrequenz einzustellen. Dieser Vorgang kann jedoch auch durch Einstellung der Parameter A020 A035 in der Vorgehensweise 1. a) bis 1. d) erfolgen.

# вептер ind Überwachund

## **Tipp-Betrieb**

Der Tipp-Eingang [JG] wird verwendet, um den Motor mit kleinen Geschwindigkeiten manuell zu betreiben. Die Geschwindigkeit ist auf 10 Hz begrenzt. Die Frequenz für den Tipp-Betrieb wird in Parameter A038 eingestellt. Der Tipp-Betrieb verwendet keine Beschleunigungsrampe, daher empfehlen wir die Einstellung einer Tipp-Frequenz von 5 Hz oder kleiner im Parameter A038.

Bei angesteuerter Steuerklemme [JG] und anstehendem RUN-Befehl, dreht der Motor mit der eingestellten Tipp-Frequenz. Um die RUN-Taste auf der Bedieneinheit für den Tipp-Betrieb zu aktivieren, stellen Sie den

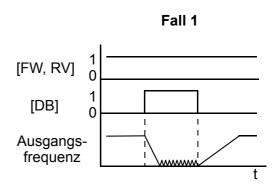


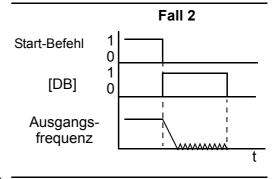
Parameter A002 auf den Wert 01 (Steuerklemmen) ein.

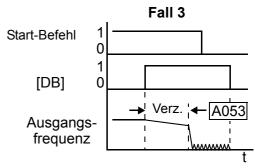
Die Art der Verzögerung bei Beendigung des Tipp-Betriebs kann durch Programmierung des Parameters A039 eingestellt werden:

- · 00 Freilauf
- 01 Rampe
- 02 DC-Bremse

| Param<br>Nr.                                                                                                                                                                                                                                                                 | Symbol | Name                                     | Status                                                | Beschreibung                                                                  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------|--|
| 06                                                                                                                                                                                                                                                                           | JG     | Tipp-Betrieb ON                          |                                                       | Umrichter ist im RUN-Betrieb, Motor dreht mit der eingestellten Tipp-Frequenz |  |
|                                                                                                                                                                                                                                                                              |        |                                          | OFF                                                   | Umrichter ist im Stop-Modus                                                   |  |
| Mögliche<br>Eingänge                                                                                                                                                                                                                                                         |        | C001, C002, C003, C004,<br>C005          |                                                       | Beispiel (Notwendige Eingangs-Konfiguration - siehe Seite 3–43):              |  |
| Einstellur                                                                                                                                                                                                                                                                   | ngen:  | A002= 01, A038 > b082,<br>A038 > 0, A039 |                                                       | JG                                                                            |  |
| <ul> <li>HINWEIS:</li> <li>Der Tipp-Betrieb wird nicht ausgeführt, wenn die Frequenzeinstellung A038 kleiner als die Startfrequenz unter b082 oder 0 Hz ist.</li> <li>Seien Sie sicher, dass der Motor beim Ein-/ Ausschalten der Tipp-Funktion [JG] auch stoppt.</li> </ul> |        |                                          | L 5 4 3 2 1 PCS  Siehe I/O Beschreibung auf Seite 4–6 |                                                                               |  |


## **Externes Signal für Gleichstrombremse**


Mit der Funktion [DB] an einem Eingang wird die Gleichstrombremse aktiviert. Einstellung folgender Parameter bei Verwendung der Gleichstrombremse [DB]:


- A053 DC Bremse/Wartezeit. Bereich von 0,1 - 5,0 s einstellbar.
- A054 DC Bremse/Bremsmoment. Bereich von 0 100% einstellbar.

Rechts 3 Beispiele zur Arbeitsweise.

- Fall 1 Start-Befehl [FW] oder [RV] steht an. Ansprechen der Gleichstrombremse bei Signal [DB], bei Wegnahme des Signals Ausgangsfrequenz wie eingestellt.
- 2. Fall 2 Start-Befehl wird abgeschaltet. Ansprechen der Gleichstrombremse bei Signal [DB], bei Wegnahme des Signals bleibt der Umrichter ausgeschaltet.
- 3. Fall 3 Start-Befehl wird abgeschaltet. Ansprechen der Gleichstrombremse bei Signal [DB] nach Ablauf der Verzögerungszeit in Parameter A053. Der Motor befindet sich im freien Auslauf. Bei Wegnahme des Signals bleibt der Umrichter ausgeschaltet.

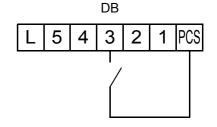






| Param<br>Nr. | Symbol    | Name                        | Status |
|--------------|-----------|-----------------------------|--------|
| 07           | DB        | Gleichstrombremse           | ON     |
|              |           |                             | OFF    |
| Mögliche E   | Eingänge: | C001, C002, C003, 0<br>C005 | C004,  |
| Einstellung  | gen:      | A053, A054                  |        |

#### **HINWEIS:**


- Signal [DB] soll, bei Verwendung eines hohen Bremsmomentes (A054), nur kurzzeitig verwendet werden (abhängig von Motoreigenschaften).
- Signal [DB] nicht wie eine Haltebremse verwenden.
   Es dient zur Auslaufverbesserung des Motors. Um auf Positionen zu stoppen, Verwendung einer mechanischen Bremse

Beispiel (Notwendige Eingangs-Konfiguration - siehe Seite 3–43):

gerung

**Beschreibung** 

Gleichstrombremse während Verzögerung Keine Gleichstrombremse während Verzö-

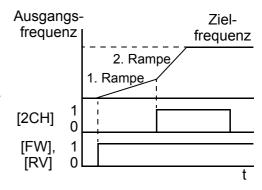


Siehe I/O Beschreibung auf Seite 4-6

# веtгіер und Überwachung

## 2. Parametersatz (Betrieb mit 2. Motor)

Mit der Funktion [SET] an einem digitalen Eingang kann zwischen zwei Einstellungen von Motorparametern gewechselt werden. Der 2. Parametersatz speichert andere Motorcharakteristiken. Bei anstehendem Signal [SET] verwendet der Umrichter den 2. Parametersatz. Im Gegensatz zur Funktion [SP-SET] kann bei dieser Funktion der Wechsel zwischen den Parametersätzen nur im Stillstand erfolgen.


Bei anstehendem Signal [SET] arbeitet der Umrichter mit dem 2. Parametersatz. Bei Wegnahme des Signals arbeitet der Umrichter mit den Originaldaten

(1. Parametersatz). Für mehr Informationen sehen Sie im Kapitel "Konfiguration für Mehrmotorenbetrieb" auf Seite 4–60.

| Param<br>Nr.                                                                             | Symbol                                                                                           | Name                                                                                                                                                                                                                                            | Status                                    | Beschreibung                                                                                    |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------|
| 08                                                                                       | SET                                                                                              | 2. Parametersatz ON                                                                                                                                                                                                                             |                                           | Aufruf der Werte für den 2. Parametersatz.<br>Nur im Stop-Zustand des Umrichters<br>umschaltbar |
|                                                                                          |                                                                                                  |                                                                                                                                                                                                                                                 | OFF                                       | Verwendung des Original-Parametersatzes                                                         |
| Mögliche<br>Eingänge                                                                     | :                                                                                                | C001, C002, C003, C004,<br>C005                                                                                                                                                                                                                 |                                           | Beispiel (Notwendige Eingangs-Konfiguration - siehe Seite 3–43):                                |
| Einstellur                                                                               | ngen:                                                                                            | (keine)                                                                                                                                                                                                                                         |                                           | SET                                                                                             |
| Betrieb nach Ste  Umscha nicht we 0Hz-Sta  Umscha bei aktiv erfolgen  Funktion im Betrie | chsel des serfolgt kei oppen des altung auf enn autom rt ausgefüaltung auf vierter Quien SET und | Signalzustandes im R<br>ne Änderung, sonder<br>s Umrichters.<br>2. Parametersatz erfo<br>atischer Wiederanlau<br>ihrt wird (b001 = 01).<br>2. Parametersatz kan<br>ck-Start-Funktion (RD<br>I SP-SET (2. Paramet<br>n NICHT gleichzeitig<br>en. | n erst<br>olgt<br>f mit<br>n nicht<br>oY) | L 5 4 3 2 1 PCS  Siehe I/O Beschreibung auf Seite 4–6                                           |

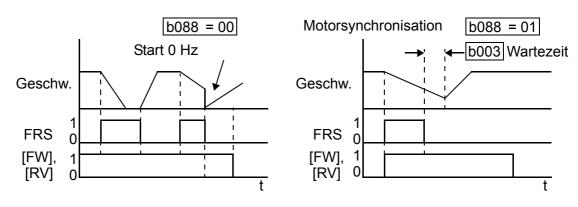
## 2. Zeitrampe (Beschleunigung und Verzögerung)

Mit der Funktion [2CH] an einem digitalen Eingang kann eine 2. Zeitrampe angewählt werden, die von den ursprünglichen (F002 und F003) abweicht. Bei Signalwechsel arbeitet der Umrichter wieder mit den ursprünglichen Werten (F002, 1. Beschleunigung und F003, 1. Verzögerung). Die 2. Zeitrampe wird mit den Parametern A092 (2. Beschleunigung) und A093 (2. Verzögerung) eingestellt.



In der Darstellung rechts wird die 2. Zeitrampe während der ursprünglichen

Beschleunigung durch einen Eingang [2CH] aktiviert. Dadurch arbeitet der Umrichter nicht mit dem Parameter F002 (1. Rampe) sondern mit dem Parameter A092 (2. Rampe).

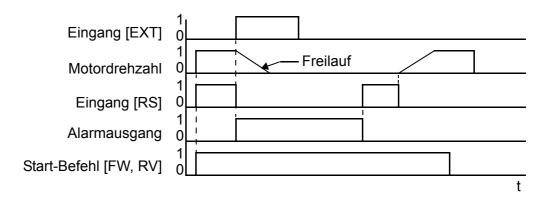

| Param<br>Nr.          | Symbol | Name                            | Status                               | Beschreibung                                                     |  |
|-----------------------|--------|---------------------------------|--------------------------------------|------------------------------------------------------------------|--|
| 09                    | 2CH    | 2. Zeitrampe                    | ON                                   | Frequenzausgang verwendet Werte der 2. Zeitrampe (A092/A093)     |  |
|                       |        |                                 | OFF                                  | Frequenzausgang verwendet Werte der 1. Zeitrampe (F002/F003)     |  |
| Mögliche<br>Eingänge  | :      | C001, C002, C003, C004,<br>C005 |                                      | Beispiel (Notwendige Eingangs-Konfiguration - siehe Seite 3–43): |  |
| Einstellur            | ngen:  | A092, A093, A094=00             |                                      | 2CH                                                              |  |
| der 2. Z<br>digitaler |        |                                 | r einen                              | L 5 4 3 2 1 PCS  -FU  -Baureihe                                  |  |
|                       |        |                                 | Siehe I/O Beschreibung auf Seite 4–6 |                                                                  |  |

## Reglersperre

Mit der Funktion [FRS] an einem digitalen Eingang schaltet der Umrichter den Ausgang ab und der Motor läuft frei aus. Bei Signalwechsel setzt der Motor, bei anstehendem Start-Befehl, seinen Betrieb fort. Die Reglersperre wirkt zusammen mit anderen Parametern, so dass verschiedene Variationen zum Starten und Stoppen des Motors möglich sind.

Die unteren Darstellungen zeigen, ob der Motor bei einem Neustart mit 0 Hz (links) beginnen oder ob er sich auf die aktuelle Motordrehzahl (rechts) aufsynchronisieren soll. Dies wird in Parameter b088 eingestellt. Die besten Einstellungen dafür müssen entsprechend der Anwendung eingestellt werden.

In Parameter b003 kann eine Wartezeit für den Neustart eingestellt werden. Um diese Funktion zu deaktivieren wird dort Null eingegeben.

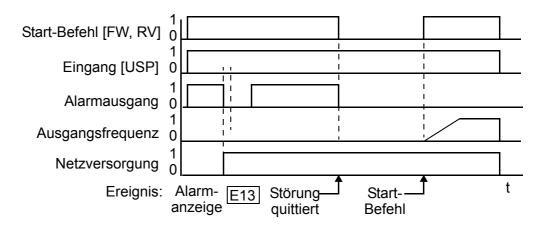



| Param<br>Nr.                                                                                                                                              | Symbol | Name                            | Status                               | Beschreibung                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------|--------------------------------------|------------------------------------------------------------------|
| 11                                                                                                                                                        | FRS    | Reglersperre                    | ON                                   | Abschalten des Umrichterausgangs, Motor läuft frei aus.          |
|                                                                                                                                                           |        |                                 | OFF                                  | Normalbetrieb, Motor fährt an der<br>Verzögerungsrampe herunter. |
| Mögliche<br>Eingänge:                                                                                                                                     |        | C001, C002, C003, C004,<br>C005 |                                      | Beispiel (Notwendige Eingangs-Konfiguration - siehe Seite 3–43): |
| Einstellungen:                                                                                                                                            |        | b003, b088, C011 bis C016       |                                      | FRS                                                              |
| HINWEIS:  • Wenn das Signal [FRS] bei "Aktiv Low" schalten soll, programmieren Sie den Parameter für den entsprechenden Eingang als Öffner (C011 - C015). |        |                                 | L 5 4 3 2 1 PCS                      |                                                                  |
|                                                                                                                                                           |        |                                 | Siehe I/O Beschreibung auf Seite 4–6 |                                                                  |

## Störung extern

Mit der Funktion [EXT] an einem digitalen Eingang wird eine externe Störung angezeigt. Der Umrichter gibt dabei die Störung E12 aus. Dies ist eine allgemeine Störung und die Bedeutung entspricht dem was dort angeschlossen wurde. Bei Signalwechsel bleibt der Umrichter im Störungsbetrieb. Die Störung muss entweder quittiert oder die Spannung des Umrichters muss ausgeschaltet werden.

Die untere Darstellung zeigt das auftretende Störungssignal [EXT] während des Normalbetriebs. Der Motor läuft frei aus und der Alarmausgang wird direkt eingeschaltet. Bei einem RESET-Signal wird der Ausgang und die Störmeldung gelöscht. Bei Wegnahme des RESET-Signals und anstehendem Start-Befehl fängt der Motor wieder an zu laufen.




| Param<br>Nr.                                                                                                                                                                                                                                                             | Symbol | Name                            | Status                                                | Beschreibung                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 12                                                                                                                                                                                                                                                                       | EXT    | Störung extern                  | ON                                                    | Bei Signalwechsel von OFF nach ON, geht der Umrichter mit der Anzeige E12 in Störung.               |
|                                                                                                                                                                                                                                                                          |        |                                 | OFF                                                   | Keine Störung bei Signalwechsel von ON nach OFF, Störungen bleiben bis zum Löschen im Störspeicher. |
| Mögliche<br>Eingänge:                                                                                                                                                                                                                                                    |        | C001, C002, C003, C004,<br>C005 |                                                       | Beispiel (Notwendige Eingangs-Konfiguration - siehe Seite 3–43):                                    |
| Einstellungen:                                                                                                                                                                                                                                                           |        | (keine)                         |                                                       | EXT                                                                                                 |
| HINWEIS:  • Bei Verwendung der Funktion [USP] (Wiederanlaufsperre) startet der Umrichter nach Quittieren einer externen Störung nicht automatisch. In diesem Fall muss ein erneuter Start-Befehl, ein RESET-Signal über die Tastur oder über die Steuerklemmen erfolgen. |        |                                 | L 5 4 3 2 1 PCS  Siehe I/O Beschreibung auf Seite 4–6 |                                                                                                     |

## Wiederanlaufsperre

Bei Einschalten der Spannung und anstehendem Start-Befehl läuft der Motor direkt an. Das Signal Wiederanlaufsperre [USP] verhindert den automatischen Start, so dass der Umrichter ohne äußere Einwirkung *nicht* anläuft. Bei aktivierter Wiederanlaufsperre und einer Störungsquittierung für den weiteren Betrieb, wird entweder der Start-Befehl weggenommen oder eine RESET-Funktion über die Steuerklemmen [RS] bzw. die Bedientastatur programmiert.

In der Darstellung ist die Wiederanlaufsperre [USP] aktiviert. Bei Einschalten des Umrichters erfolgt kein Motorstart, auch nicht bei anstehendem Start-Befehl. Stattdessen wird eine Störung E13 (USP) angezeigt. Dies erfordert einen äußeren Eingriff, um die Störung durch Wegnahme des Start-Befehls zu quittieren. Durch einen Start-Befehl kann der Umrichter wieder arbeiten.



| Param<br>Nr.                                                                                                                                                                                                                                                                                                                          | Symbol | Name Status                                                      |                     | Beschreibung                                                                      |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------|--|--|
| 13                                                                                                                                                                                                                                                                                                                                    | USP    | Wiederanlauf- ON sperre                                          |                     | Beim Einschalten läuft der Umrichter bei einem anstehenden Start-Signal nicht an. |  |  |
|                                                                                                                                                                                                                                                                                                                                       |        |                                                                  | OFF                 | Beim Einschalten läuft der Umrichter bei anstehendem Start-Befehl wieder an.      |  |  |
| Mögliche<br>Eingänge:                                                                                                                                                                                                                                                                                                                 |        | C001, C002, C003, C004,<br>C005                                  |                     | Beispiel (Notwendige Eingangs-Konfiguration - siehe Seite 3–43                    |  |  |
| Einstellungen: (keine)                                                                                                                                                                                                                                                                                                                |        | Grundwerte unterscheiden sich in den Modellen -FU, -FE und -FR): |                     |                                                                                   |  |  |
| <ul> <li>HINWEIS:</li> <li>Beachten Sie, dass bei aktivierter Wiederanlaufsperre (USP) der Umrichter durch ein RESET-Signal an den Steuerklemmen [RS] direkt wieder gestartet wird.</li> <li>Bei quittierter Störung durch einen Eingang [RS] und auftretender Unterspannungsauslösung (E09) wird Wiederanlauf ausgeführt.</li> </ul> |        |                                                                  | USP L 5 4 3 2 1 PCS |                                                                                   |  |  |
| Bei anstehendem Start-Befehl nach dem<br>Einschalten, wird ein Fehler Wiederanlauf<br>angezeigt. Bei Verwendung dieser Funktion<br>nach dem Einschalten mindestens 3s warten,<br>bevor wieder ein Start-Befehl erfolgt.                                                                                                               |        |                                                                  |                     | Siehe I/O Beschreibung auf Seite 4–6                                              |  |  |

# **Parametersicherung**

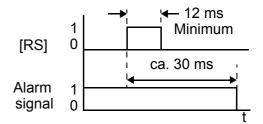
Mit der Funktion [SFT] an einem digitalen Eingang werden die Daten von allen Parametern und Funktionen (mit Ausnahme der Frequenzeinstellung, entsprechend der Einstellung von b031) gegen Überschreiben gesichert. Bei Sperrung der Daten können keine Parameter über die Bedientastatur geändert werden. Um Parameter wieder zu ändern, muss der Eingang [SFT] ausgeschaltet werden.

Verwenden Sie Parameter b031 um auszuwählen, ob die Frequenzeinstellung davon ausgenommen ist.

| Param<br>Nr.                                                                                                                                                                      | Symbol | Name                                                                               | Status | Beschreibung                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------|
| 15                                                                                                                                                                                | SFT    | Parameter- ON sicherung                                                            |        | Keine Parameteränderungen über Tastatur oder andere Programmiereinheiten möglich |
|                                                                                                                                                                                   |        |                                                                                    | OFF    | Parameter können geändert und abgespeichert werden                               |
| Mögliche<br>Eingänge:                                                                                                                                                             |        | C001, C002, C003, C004,<br>C005                                                    |        | Beispiel (Notwendige Eingangs-Konfiguration - siehe Seite 3–43):                 |
| Einstellungen:                                                                                                                                                                    |        | b031 (Ausnahme Sperrung)                                                           |        | SFT                                                                              |
| die Frequenzeins                                                                                                                                                                  |        | des Signals [SFT] kann nur<br>tellung geändert werden.<br>ung kann durch Parameter |        | L 5 4 3 2 1 PCS                                                                  |
| <ul> <li>b031 auch gesperrt werden.</li> <li>Parametersicherung durch den Bediener kann<br/>auch ohne Verwendung des Eingangs [SFT]<br/>durch Parameter b031 erfolgen.</li> </ul> |        |                                                                                    |        | Siehe I/O Beschreibung auf Seite 4–6                                             |

# **Aktivierung Sollwerteingang Ol**

Mit dem Eingang [AT] wird ausgewählt, ob der Umrichter den Spannungseingang [O] oder den Stromeingang [OI] für die Frequenzeinstellung verwendet. Bei eingeschaltetem Eingang [AT] ist der Stromeingang [OI] - [L] aktiviert, während bei ausgeschaltetem Eingang [AT] der Spannungseingang [O] - [L] aktiviert ist. Parameter A001 muss auf "01" eingestellt sein, damit die Frequenzeinstellung über die analogen Eingänge erfolgen kann.


| Param<br>Nr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Symbol | Name                            | Status                                                                  | Beschreibung                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AT     | Sollwerteingang OI              | ang OI ON                                                               | Analog-Eingang OI (Strom) ist aktiviert                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | aktiv                           | OFF                                                                     | Analog-Eingang O (Spannung) ist aktiviert                                                                                       |
| Mögliche<br>Eingänge:                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | C001, C002, C003, C004,<br>C005 |                                                                         | Beispiel (Notwendige Eingangs-Konfiguration - siehe Seite 3–43 Grundwerte unterscheiden sich in den Modellen -FU, -FE und -FR): |
| Einstellungen:                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | A001 = 01                       |                                                                         |                                                                                                                                 |
| <ul> <li>HINWEIS:</li> <li>Wird die Funktion [AT] durch keinen Eingang angesteuert, verwendet der Umrichter die Summe der beiden Analog-Eingänge zur Frequenzeinstellung (A001=01).</li> <li>Wird entweder der Strom- oder Spannungseingang verwendet, stellen Sie sicher, dass ein Eingang mit der Funktion [AT] angeschlossen ist.</li> <li>Die Einstellung der Frequenzvorgabe muss für die Verwendung von Analog-Eingängen (A001=01) vorgenommen worden sein.</li> </ul> |        |                                 | AT  L 5 4 3 2 1 PCS  AM H O OI L  4-20 mA bei AT= ON 0-10 V bei AT= OFF |                                                                                                                                 |

Siehe I/O Beschreibung auf Seite 4-6

und eine der Bedientasten gedrückt werden.

#### **Umrichter RESET**

Das Signal am Eingang [RS] lässt den Umrichter einen RESET ausführen. Eine anstehende Störmeldung wird zurückgesetzt. Die Impulslänge eines RESET-Signals muss mindestens 12ms betragen. Der Alarmausgang wird 30ms nach dem RESET-Befehl zurückgesetzt.





**WARNUNG:** Nach erfolgtem RESET-Befehl und Störungsquittierung kann der Motor plötzlich, bei anstehendem Start-Befehl, wieder anlaufen. Um Personenschäden zu vermeiden, vergewissern Sie sich, dass der Start-Befehl nach Störungsquittierung nicht mehr ansteht.

| Param<br>Nr.                                                                                                                                                                                                                                                                                                      | Symbol | Name                            | Status                                                | Beschreibung                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 18                                                                                                                                                                                                                                                                                                                | RS     | Reset                           | ON                                                    | Umrichterausgang wird abgeschaltet,<br>vorhandene Störungen werden gelöscht und<br>ein Geräteneustart erfolgt |
|                                                                                                                                                                                                                                                                                                                   |        |                                 | OFF                                                   | Normaler Betrieb                                                                                              |
| Mögliche<br>Eingänge:                                                                                                                                                                                                                                                                                             |        | C001, C002, C003, C004,<br>C005 |                                                       | Beispiel (Grundwerte Eingangs-Konfiguration - siehe Seite 3–43):                                              |
| Einstellungen:                                                                                                                                                                                                                                                                                                    |        | (keine)                         |                                                       | RS                                                                                                            |
| HINWEIS:  • Bei Anstehen des RESET-Signals für mehr als 4 Sekunden, zeigt die angeschlossene Fernbedienung "R-ERROR COMM<2>". Die Anzeige auf der Bedieneinheit zeigt "— — ". Jedoch nur, wenn der Umrichter keine Störung hat. Um Störungen an der Bedieneinheit zu löschen, muss der Eingang [RS] ausgeschaltet |        |                                 | L 5 4 3 2 1 PCS  Siehe I/O Beschreibung auf Seite 4–6 |                                                                                                               |

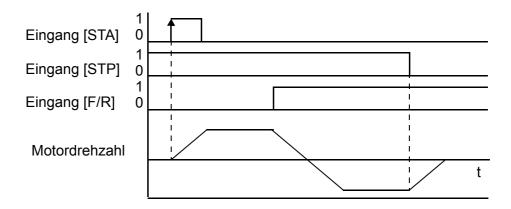
- Durch Drücken der Taste Stop/Reset an der Bedieneinheit kann bei einer aufgetretenen Störung diese gelöscht werden.
- Der Eingang [RS] kann nur sinnvoll als Schließer programmiert werden. Er kann nicht als Öffner verwendet werden.
- RESET durch Einschalten der Spannungsversorgung oder durch Einschalten des Eingangs [RS] führt den gleichen Vorgang aus.
- Die Taste Stop/Reset des Umrichters ist, bei Anschluss einer Fernbedienung, nur für ein paar Sekunden nach Einschalten betriebsbereit.
- Ein RESET-Signal während des Motorbetriebs, bewirkt einen freien Auslauf des Motors.
- Bei Verwendung der Ausschaltverzögerung für die Ausgänge (C145, C147, C149 > 0,0s) beeinflusst das Signal [RS] diese Verzögerung geringfügig. Normalerweise (ohne Ausschaltverzögerung) schaltet der Eingang [RS] den Umrichterausgang und die digitalen Ausgänge sofort zusammen ab. Wird jedoch bei einem Ausgang die Ausschaltverzögerung verwendet, bleibt nach Einschalten des Signals [RS] der Ausgang für ca. 1s anstehen.
- Mit Parameter C102 kann eingestellt werden, wann das RESET-Signal geschaltet werden soll (Ansteigende bzw. abfallende Flanke, ansteigende Flanke bei einer Störmeldung)

## Thermistorschutz (Kaltleiterschutz)

Motoren mit einem eingebauten Thermistor (Kaltleiter) können diesen vor Überhitzung schützen. Nur an der Eingangsklemme [5] kann ein Thermistor angeschlossen werden. Wenn der Widerstandswert des angeschlossenen Thermistors [5] und [L] 3 kOhm ±10% übersteigt, meldet der Umrichter eine Störung, schaltet den Umrichterausgang ab und gibt die Störmeldung E35 aus. Verwenden Sie diese Funktion, um den Motor vor Überhitzung zu schützen.

| Param<br>Nr.                                                                                                                                                                                                                                                                                                                                                           | Symbol | Name              | Status | Beschreibung                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19                                                                                                                                                                                                                                                                                                                                                                     | TH     | Kaltleitereingang | Sensor | Bei Anschluss eines Thermistors an der<br>Eingangsklemme [5] und [L] überprüft der<br>Umrichter den Kaltleiterwiderstand, erzeugt<br>gegebenenfalls eine Störung (E35) und<br>schaltet den Umrichterausgang ab |
|                                                                                                                                                                                                                                                                                                                                                                        |        |                   | Offen  | Ein nichtangeschlossener Thermistor erzeugt eine Störung und der Umrichterausgang wird abgeschaltet                                                                                                            |
| Mögliche<br>Eingänge:                                                                                                                                                                                                                                                                                                                                                  |        | nur C005          |        | Beispiel (Notwendige Eingangs-Konfiguration - siehe Seite 3–43):                                                                                                                                               |
| Einstellungen:                                                                                                                                                                                                                                                                                                                                                         |        | C085              |        | TH                                                                                                                                                                                                             |
| <ul> <li>HINWEIS:</li> <li>Der Thermistor muss an den Klemmen [5] und [L] angeschlossen werden. Ist der Widerstandswert &gt;3kΩ +/- 10%, erzeugt der Umrichter eine Störung. Bei Abkühlung des Motors ändert sich auch der Widerstandswert so, dass eine Quittierung der Störung möglich ist. Durch Drücken der Taste STOP/Reset wird die Störung gelöscht.</li> </ul> |        |                   |        | L 5 4 3 2 1 PCS Thermistor MOTOR                                                                                                                                                                               |

## **Betrieb mit 3-Draht Steuerung**


Die 3-Draht Steuerung ist in der Industrie eine geläufige Art der Motoransteuerung. Diese Funktion verwendet zwei Eingänge als Impulse für Start/Stop und einen dritten Eingang für die Auswahl der Drehrichtung. Um eine 3-Draht Steuerung zu realisieren müssen folgende Signale mit der Funktion [STA] (Start), [STP] (Stop) und [FR] (Rechts-/Linkslauf) an drei Eingangsklemmen angeschlossen werden. Verwenden Sie je einen Impulseingang (Taster) für Start/Stop. Zur Änderung der Drehrichtung dient ein einpoliger Schalter. Zum Betrieb über die Steuerklemmen muss der Parameter A002 auf "01" eingestellt werden.

Bei einer Motoransteuerung mit Zustandssignalen (anstelle Impulse) verwenden Sie die Eingänge [FW] und [RV].

| Param<br>Nr.                                                                                                                                                                                                                                                          | Symbol | Name                | Status                                                           | Beschreibung                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------|------------------------------------------------------------------|----------------------------------------------------------------------|
| 20                                                                                                                                                                                                                                                                    | STA    | 3-Draht Impulsstart | ON                                                               | Motorstart durch Impulseingang<br>(Verwendung Beschleunigungsprofil) |
|                                                                                                                                                                                                                                                                       |        |                     | OFF                                                              | Keine Änderung des Motorbetriebs                                     |
| 21                                                                                                                                                                                                                                                                    | STP    | 3-Draht Impulsstop  | ON                                                               | Keine Änderung des Motorbetriebs                                     |
|                                                                                                                                                                                                                                                                       |        |                     | OFF                                                              | Motorstop durch Impulseingang (Verwendung Verzögerungsprofil)        |
| 22                                                                                                                                                                                                                                                                    | F/R    | 3-Draht             | ON                                                               | Linkslauf                                                            |
|                                                                                                                                                                                                                                                                       |        | Drehrichtung        |                                                                  | Rechtslauf                                                           |
| Mögliche Eingänge:         C001, C002, C003, C004, C005                                                                                                                                                                                                               |        | C004,               | Beispiel (Notwendige Eingangs-Konfiguration - siehe Seite 3–43): |                                                                      |
| Einstellungen: A002 = 01                                                                                                                                                                                                                                              |        | STP<br>F/R STA      |                                                                  |                                                                      |
| <ul> <li>HINWEIS:</li> <li>Das Signal [STP] hat invertierte Logik. Im<br/>Normalfall ist der Schalter geschlossen<br/>(Öffner) und zum Stoppen muss er geöffnet<br/>werden. In diesem Fall läßt ein Drahtbruch den<br/>Motor automatisch anhalten (Sicher-</li> </ul> |        |                     | L 5 4 3 2 1 PCS                                                  |                                                                      |

- Motor automatisch anhalten (Sicherheitsaspekt).
- Bei Einstellung der 3-Draht Ansteuerung ist die zugehörige Steuerklemme [FW] und [RV] deaktiviert.
- Siehe I/O Beschreibung auf Seite 4-6

Das Diagramm unten zeigt eine 3-Draht Ansteuerung. Das Signal [STA] ist flankengesteuert und bei positiver Flanke wird der Start-Befehl ausgelöst. Die Steuerung der Drehrichtung ist zustandsgesteuert und kann jederzeit geändert werden. Das Signal [STP] ist ebenfalls ein zustandsgesteuerter Eingang.



Umrichterbetriebs löschen [PIDC]

#### PID-Regler Ein-/Ausschalten und Löschen

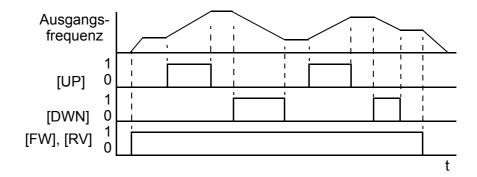
Der PID-Regler ist nützlich, um eine Motorregelung (Durchfluss, Druck, Temperatur) für Prozessanwendungen zu erreichen. Die PID-Funktion kann durch Beschalten eines digitalen Eingangs unterdrückt werden. Der Parameter A071 (PID-Regler aktiviert) wird dabei überschrieben, die Ausführung der PID-Regelung wird gestoppt und der Motor läuft mit normaler Frequenzsteuerung. Die Aktivierung des PID-Reglers erfolgt normalerweise durch Einstellung des Parameters A071=01.

Das Zurücksetzen des I-Anteils (Integral-Anteil) beim PID-Regler erfolgt durch Beschalten eines Digital-Eingangs [PIDC].



**ACHTUNG:** Löschen Sie den I-Anteil des PID-Reglers nicht im RUN-Betrieb des Umrichters. Andernfalls könnte es zu einer schnellen Verzögerung kommen, die eine Störung hervorruft.

| Param<br>Nr.                                                                                                                                                                                                                                                                                                                                                 | Symbol | Name Status                                           |     | Beschreibung                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------|-----|------------------------------------------------------------------|
| 23                                                                                                                                                                                                                                                                                                                                                           | PID    | PID-Regler Ein/Aus                                    | ON  | Deaktivierung PID-Regler                                         |
|                                                                                                                                                                                                                                                                                                                                                              |        |                                                       | OFF | Aktivierung PID-Regler bei A71=01                                |
| 24                                                                                                                                                                                                                                                                                                                                                           | PIDC   | PID-Regler I-Anteil                                   | ON  | Zurücksetzen des I-Anteils                                       |
|                                                                                                                                                                                                                                                                                                                                                              |        | zurücksetzen                                          | OFF | Keine Änderung des PID-Reglers                                   |
| Mögliche<br>Eingänge:                                                                                                                                                                                                                                                                                                                                        |        | C001, C002, C003, C004,<br>C005                       |     | Beispiel (Notwendige Eingangs-Konfiguration - siehe Seite 3–43): |
| Einstellungen:                                                                                                                                                                                                                                                                                                                                               |        | A071                                                  |     | PIDC<br>PID                                                      |
| <ul> <li>HINWEIS:</li> <li>Die Verwendung der Funktion [PID] und [PIDC] ist nicht zwingend notwendig, um den PID-Regler zu aktivieren. Einstellung des Parameters A071=01 zur ständigen Aktivierung des PID-Reglers</li> <li>PID-Regler nicht während des Umrichterbetriebs ein-/ausschalten.</li> <li>I-Anteil des PID-Reglers nicht während des</li> </ul> |        | L 5 4 3 2 1 PCS  Siehe I/O Beschreibung auf Seite 4–6 |     |                                                                  |


# und Überwachung

#### **Funktionen des Motorpotentiometers**

Mit den Signalen [UP] (Frequenz erhöhen) und [DWN] (Frequenz verringern) an den Steuerklemmen kann die Ausgangsfrequenz mittels zweier Taster während des Umrichterbetriebs stufenlos verändert werden. Die Beschleunigungs- und Verzögerungszeiten entsprechen denen im normalen Betrieb (F002, F202, F003, F203). Die Eingangsklemmen arbeiten nach folgendem Prinzip:

- Beschleunigung Bei Signal [UP] (Frequenz erhöhen) erfolgt eine Frequenzerhöhung, solange das Signal ansteht. Bei Wegnahme des Signals bleibt die aktuelle Frequenz erhalten.
- Verzögerung Bei Signal [DWN] (Frequenz verringern) erfolgt eine Frequenzverringerung, solange das Signal ansteht. Bei Wegnahme des Signals bleibt die aktuelle Frequenz erhalten.

Im Diagramm unten werden die Steuerklemmen [UP] und [DWN] während des RUN-Betriebs beschaltet. Die Ausgangsfrequenz folgt den Befehlen [UP] und [DWN].



verfügbar.

Wert (Maximalfrequenz).

Der Umrichter speichert den geänderten Sollwert (Steuerklemmen [UP] und [DWN]) auch nach Spannungsverlust. Der Parameter C101 aktiviert/deaktiviert diesen Speicher. Bei deaktiviertem Speicher (C101=00) läuft der Umrichter mit dem letzten Sollwert der vor der UP/DWN-Einstellung benutzt wurde. Verwendung der Steuerklemme [UDC] um den Speicher zu löschen und zu der ursprünglichen Frequenz zurückzukehren.

| Param<br>Nr.                                                                                                                                                                                                                           | Symbol               | Name                                  | Status          | Beschreibung                                                             |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------|-----------------|--------------------------------------------------------------------------|--|
| 27                                                                                                                                                                                                                                     | UP                   | Motorpotentiometer "Frequenz erhöhen" | ON              | Beschleunigung des Motors von der aktuellen Frequenz (Frequenzerhöhung)  |  |
|                                                                                                                                                                                                                                        |                      |                                       | OFF             | Normaler Motorbetrieb                                                    |  |
| 28                                                                                                                                                                                                                                     | DWN                  | Motorpotentiometer C<br>"Frequenz     |                 | Verzögerung des Motors von der aktuellen Frequenz (Frequenzverringerung) |  |
|                                                                                                                                                                                                                                        |                      | verringern" OFF                       |                 | Normaler Motorbetrieb                                                    |  |
| 29                                                                                                                                                                                                                                     | UDC                  | Motorpotentiometer                    | ON              | Löschen der gespeicherten Frequenz                                       |  |
|                                                                                                                                                                                                                                        | "Frequer<br>zurückse |                                       | OFF             | Keinen Einfluss auf den Frequenzspeicher                                 |  |
| Mögliche<br>Eingänge                                                                                                                                                                                                                   |                      | C001, C002, C003, C004,<br>C005       |                 | Beispiel (Notwendige Eingangs-Konfiguration - siehe Seite 3–43):         |  |
| Einstellungen: A001 = 02                                                                                                                                                                                                               |                      | A001 = 02                             |                 | DWN UP                                                                   |  |
| <ul> <li>HINWEIS:</li> <li>Diese Funktion ist nur verfügbar, wenn die Frequenzvorgabe über die Bedieneinheit erfolgt. Parameter A001 muss auf "02" eingestellt werden.</li> <li>Im Tipp-Betrieb [JG] ist die Funktion nicht</li> </ul> |                      |                                       | L 5 4 3 2 1 PCS |                                                                          |  |

Siehe I/O Beschreibung auf Seite 4-6

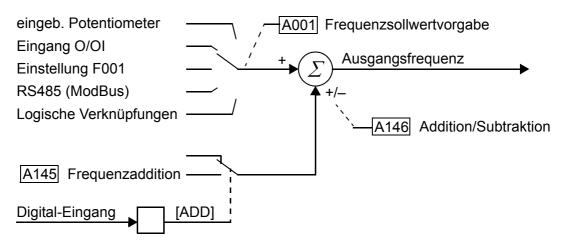
• Die Mindest-Signallänge für [UP] und [DWN] beträgt 50ms.

Der Bereich der Ausgangsfrequenz reicht von 0 Hz bis zu dem in Parameter A004 eingestellten

# שפווופט und Überwachun

#### Steuerung über Bedienfeld

Diese Funktion erlaubt das Überschreiben folgender Parameter durch eine Bedienerschnittstelle:


- · A001 Frequenzsollwertvorgabe
- A002 Start-/Stop-Vorgabe

Bei Anwendung des Steuereingangs [OPE], sind normalerweise die Parameter A001 und A002 so eingestellt, dass der Umrichter über Digital-Eingänge gestartet und der Sollwert über Analog-Eingänge vorgegeben wird. Wenn das Steuersignal [OPE] ansteht, hat der Anwender direkten Zugriff auf den Umrichter um ihn zu starten, stoppen und die Geschwindigkeit einzustellen.

| Param<br>Nr.                                                                                                                                                                                                                                                                                              | Symbol    | Name                                                             | Status                      | Beschreibung                                                                                              |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------|--|
| 31                                                                                                                                                                                                                                                                                                        | OPE       | Steuerung über ON Bedienfeld                                     |                             | Überschreiben durch Bedienfeld:<br>A001 - Frequenzsollwertvorgabe<br>A002 - Start-/Stop-Vorgabe           |  |
|                                                                                                                                                                                                                                                                                                           |           |                                                                  | OFF                         | Frequenzsollwertvorgabe und Start-/Stop-<br>Vorgabe kann über Parameter A001 und<br>A002 verändert werden |  |
| Mögliche C001, C002, C003, C004, C005                                                                                                                                                                                                                                                                     |           | Beispiel (Notwendige Eingangs-Konfiguration - siehe Seite 3–43): |                             |                                                                                                           |  |
|                                                                                                                                                                                                                                                                                                           |           | A001 (ungleich 00)<br>A002 (ungleich 02)                         |                             | OPE                                                                                                       |  |
| <ul> <li>HINWEIS:</li> <li>Bei Signaländerung [OPE] während des RUN-Betriebs, stoppt der Umrichter den Motor bevor das neue Signal [OPE] Einfluss hat.</li> <li>Bei eingeschaltetem Eingang [OPE] und Start-Befehl über das Bedienfeld während des Umrichterbetriebs, stoppt der Umrichter den</li> </ul> |           |                                                                  | L   5   4   3   2   1   PCS |                                                                                                           |  |
|                                                                                                                                                                                                                                                                                                           | Dann kann | das Bedienfeld den l                                             |                             | Signe we begoin obding dai cone 4-0                                                                       |  |

#### Frequenzaddition

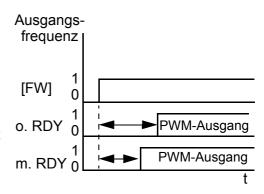
Der Umrichter kann zur Ausgangsfrequenz (vorgegeben durch A001) einen Frequenz-Offset addieren oder subtrahieren. Dieser Offset kann in Parameter A145 gespeichert werden. Er wird durch das Beschalten eines Digital-Eingangs [ADD] bearbeitet. In Parameter A146 wird festgelegt, ob der Offset zur Ausgangsfrequenz addiert oder subtrahiert wird. Bei Konfiguration eines Digital-Eingangs mit der Funktion [ADD], kann der Anwendung der festgelegte Wert aus A145 in Echtzeit wahlweise hinzugefügt oder abgezogen werden



| Param<br>Nr.                                                                                                                                                                                  | Symbol | Name                | Status                                                           | Beschreibung                                                                  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
| 50                                                                                                                                                                                            | ADD    | Frequenzaddition ON |                                                                  | Addition des Frequenz-Offset von Parameter A145 zum Frequenzsollwert.         |  |
|                                                                                                                                                                                               |        | OFF                 |                                                                  | Keine Addition der Frequenz. Die Ausgangsfrequenz behält ihren normalen Wert. |  |
| Mögliche C001, C002, C003, C004, C005                                                                                                                                                         |        | C004,               | Beispiel (Notwendige Eingangs-Konfiguration - siehe Seite 3–43): |                                                                               |  |
| Einstellungen:                                                                                                                                                                                |        | A001, A145, A146    |                                                                  | ADD                                                                           |  |
| <ul> <li>HINWEIS:</li> <li>Mit Parameter A001 wird die Frequenzaddition ausgewählt. Der Frequenz-Offset (A145) kann zur aktuellen Frequenz addiert oder subtrahiert werden (A146).</li> </ul> |        | (A145)              | L 5 4 3 2 1 PCS                                                  |                                                                               |  |
|                                                                                                                                                                                               |        |                     | Siehe I/O Beschreibung auf Seite 4–6                             |                                                                               |  |

#### **Terminal-Modus**

Mit diesem Steuereingang besteht die Möglichkeit mit einer Baugruppe folgende Parameter über die Steuerklemmen zu beeinflussen:


- A001 Frequenzsollwertvorgabe (01 = Steuerklemmen [FW] und [RV])
- A002 Start-/Stop-Vorgabe (01 = Steuerklemmen [O] oder [OI])

Einige Anwendungen benötigen Einstellungen, um eine Steuerung sowohl über die Parametervorgaben als auch über Steuerklemmen durchzuführen. Normalerweise wird die Bedienung über die Tastatur und Potentiometer oder das ModBus-Netzwerk bevorzugt verwendet. Durch Beschaltung des Eingangs [F-TM] durch eine externe Baugruppe kann dann der Frequenzsollwert und der Start-/Stop-Befehl über die Steuerklemmen vorgegeben werden. Bei ausgeschaltetem Eingang [F-TM] verwendet der Umrichter wieder die normalen Vorgaben von A001 und A002.

| F-TM                                                                                                                                      | Terminal-Modus                  | ON                                                        | A001=01 (Frequenzsollwertvorgabe über Steuerklemmen) und A002=01(Start-/Stop-Vorgabe über Steuerklemmen) |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                           |                                 |                                                           | Steuerklemmen) und A002=01(Start-/Stop-Vorgabe über Steuer-                                              |  |
|                                                                                                                                           |                                 | OFF                                                       | Verwendung der Einstellungen von A001 und A002                                                           |  |
|                                                                                                                                           | C001, C002, C003, C004,<br>C005 |                                                           | Beispiel (Notwendige Eingangs-Konfiguration - siehe Seite 3–43):                                         |  |
| gen:                                                                                                                                      | A001, A002                      |                                                           | F-TM                                                                                                     |  |
| HINWEIS:  • Bei Signaländerung [F-TM] während des RUN-Betriebs stoppt der Umrichter den Motor, bevor das neue Signal [F-TM] Einfluss hat. |                                 | L 5 4 3 2 1 PCS  Siehe I/O Beschreibung auf Seite 4–6     |                                                                                                          |  |
| alá                                                                                                                                       | anderur<br>oppt de              | änderung [F-TM] während de<br>oppt der Umrichter den Moto | anderung [F-TM] während des RUN-<br>oppt der Umrichter den Motor, bevor                                  |  |

#### **Quick-Start-Funktion (Optimierung Reaktionszeit)**

Mit der Quick-Start-Funktion wird dei Reaktionszeit vom Start-Befehl bis zur Generierung eines Drehfeldes am Ausgang U, V und W optimiert. Quick-Start kann unter Parameter b151 oder über einen Digital-Eingang mit der Funktion [RDY] aktiviert werden. Bei dieser Funktion ist der Umrichter immer im RUN-Modus, auch wenn der Motor sich nicht dreht.





**ACHTUNG:** Ist die Funktion [RDY] aktiv, liegt IMMER eine Spannung an den Ausgangsklemmen U-V-W, auch wenn der Motor sich nicht dreht.

| Param<br>Nr.                                                                                                                                                      | Symbol                                                                                                                                                                                                                                                                                                                                                                                                    | Name                     | Status                                                                | Beschreibung                                                                                                    |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| 52                                                                                                                                                                | RDY                                                                                                                                                                                                                                                                                                                                                                                                       | Quick-Start- ON Funktion |                                                                       | Umrichterausgang führt Spannung (auch<br>wenn sich der Motor nicht dreht) um die<br>Reaktionszeit zu optimieren |  |
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                           |                          | OFF                                                                   | Umrichterausgang wird normal abgeschaltetNormale Reaktionszeit                                                  |  |
| Mögliche<br>Eingänge                                                                                                                                              | Mögliche C001<br>Eingänge: C005                                                                                                                                                                                                                                                                                                                                                                           |                          | C004,                                                                 | Beispiel (Notwendige Eingangs-Konfiguration - siehe Seite 3–43):                                                |  |
| Einstellungen: (keine)                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                           |                          | RDY                                                                   |                                                                                                                 |  |
| <ul> <li>Bei aktiv<br/>Spannu<br/>V und V<br/>kein Sta</li> <li>Es könr<br/>werden,<br/>Betrieb,<br/>zeichne</li> <li>Mit Para<br/>ebenfall<br/>diesem</li> </ul> | <ul> <li>HINWEIS:</li> <li>Bei aktivierter Quick-Start-Funktion liegt<br/>Spannung an den Motoranschlussklemmen U,<br/>V und W. Die RUN-LED leuchtet, auch wenn<br/>kein Start-Befehl anliegt.</li> <li>Es können nur die Parameter verändert<br/>werden, die in der Spalte "Einstellbar im<br/>Betrieb, Standard / Erweitert" mit "Ja" gekenn-<br/>zeichnet sind ("Erweitert" wenn b031 = 10)</li> </ul> |                          | L 5 4 3 2 1 PCS  —FU  —Baureihe  Siehe I/O Beschreibung auf Seite 4–6 |                                                                                                                 |  |

#### **Anwahl 2. Parametersatz im Betrieb**

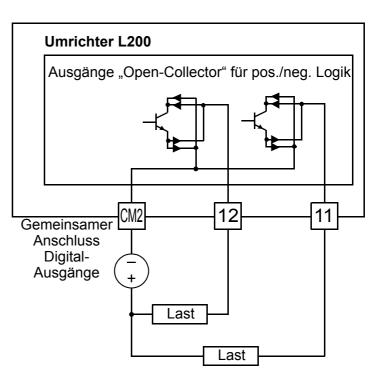
Mehrmotorenbetrieb" auf Seite 4-60.

Mit der Funktion [SP-SET] an einem digitalen Eingang kann zwischen zwei Einstellungen von Motorparametern gewechselt werden. Der 2. Parametersatz speichert andere Motorcharakteristiken. Bei anstehendem Signal [SP-SET] verwendet der Umrichter die Parameter des 2. Parametersatz die auch im Betrieb veränderbar sind. Im Gegensatz zur Funktion [SET] kann bei dieser Funktion der Wechsel zwischen den Parametersätzen auch im Betrieb erfolgen.

Bei anstehendem Signal [SP-SET] arbeitet der Umrichter mit dem 2. Parametersatz. Bei Wegnahme des Signals arbeitet der Umrichter mit den Originaldaten (1. Parametersatz). Für mehr Informationen sehen Sie im Kapitel "Konfiguration für

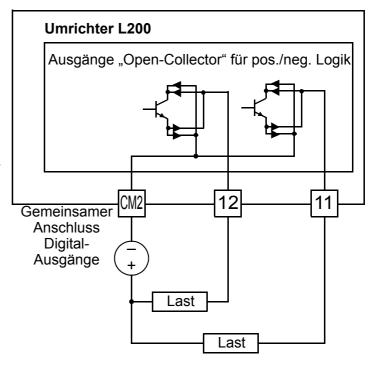
| Param<br>Nr.                                                                                                                                                                                                                                         | Symbol | Name Status                                           |  | Beschreibung                                                                                        |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------|--|-----------------------------------------------------------------------------------------------------|--|
| 53                                                                                                                                                                                                                                                   | SP-SET | Anwahl 2. Parametersatz im Betrieb                    |  | Aufruf der Werte für den 2. Parametersatz.<br>Umschaltung im Stop-Zustand und im<br>Betrieb möglich |  |
|                                                                                                                                                                                                                                                      |        | OFF                                                   |  | Verwendung des Original-Parametersatzes                                                             |  |
| Mögliche<br>Eingänge:                                                                                                                                                                                                                                |        | C001, C002, C003, C004,<br>C005                       |  | Beispiel (Notwendige Eingangs-Konfiguration - siehe Seite 3–43):                                    |  |
| Einstellungen:                                                                                                                                                                                                                                       |        | (keine)                                               |  | SP-SET                                                                                              |  |
| <ul> <li>HINWEIS:</li> <li>Umschaltung auf 2. Parametersatz kann nicht bei aktivierter Quick-Start-Funktion (RDY) erfolgen.</li> <li>Funktion SET und SP-SET (2. Parametersatz im Betrieb) können NICHT gleichzeitig parametriert werden.</li> </ul> |        | L 5 4 3 2 1 PCS  Siehe I/O Beschreibung auf Seite 4–6 |  |                                                                                                     |  |

Folgende Parameter können während des Betriebs auf den 2. Parametersatz umgeschaltet werden:


A020/A220, F002/F202, F003/F203, A042/A242, A043/A243, A061/A261, A062/A262, A092/A292, A093/A293, A094/A294, A095/A295, A096/A296

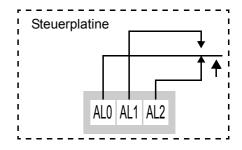
## Verwendung Ausgangsklemmen

Die Programmierung der Ausgangsklemmen ist ähnlich wie die der Eingangsklemmen. Der Umrichter hat verschiedene Funktionen, die auf drei digitale Ausgänge programmiert werden können. Davon sind zwei Transistorausgänge des Typs "Open-Collector", der dritte Ausgang ist ein Relais mit einem Wechslerkontakt. Das Relais wird normalerweise als Alarm-Relais verwendet. Es können auch alle anderen Funktionen damit realisiert werden.


# Ausgang "Open-Collector", negative Logik

Jeder Transistorausgang kann mit einem Strom von bis zu 50mA belastet werden. Wir empfehlen, wie dargestellt, die Verwendung einer externen Spannungsversorgung. Diese muss für einen Strom von 100mA ausgelegt sein, um beide Ausgänge mit voller Last zu betreiben. Bei höheren Belastungen müssen externe Relais verwendet werden.




# Ausgang "Open-Collector" mit externem Relais, negative Logik

Bei Verwendung des Ausgangs für größere Ströme als 50mA, muss der Ausgang mit einem Relais angesteuert werden. Dabei sollte entweder eine Diode in Sperrrichtung, um die Ausschaltspitze zu unterdrücken, oder ein Optokoppler verwendet werden.

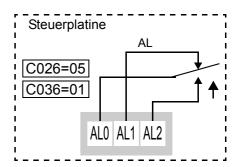


#### Relais-Ausgang

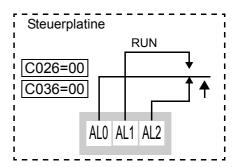
Der Umrichter hat einen Relais-Ausgang mit einem Wechselkontakt. Dieser Ausgang ist ebenfalls programmierbar. In der Grundeinstellung wird er als Alarm-Relais verwendet. Die Klemmen sind, wie rechts beschrieben, mit [AL0], [AL1], [AL2] bezeichnet. Die Programmierung kann mit jeder der 9 Funktionen vorgenommen werden. Die Klemmen haben folgende Funktion:



- [AL0] Fußkontakt
- [AL1] Schließer
- [AL2] Öffner


Das Relais kann mit Parameter C036 als "Öffner" oder "Schließer" konfiguriert werden. Diese Einstellung legt fest, ob das Relais im ausgeschalteten Zustand und bei eingeschalteter Netzspannung (also im Stop) betätigt wird:

- C036=00 "Schließer" (Keine Betätigung des Relais im ausgeschalteten Zustand),
   d. h. bei Netz-Ein und betriebsbereitem Frequenzumrichter ist der Kontakt AL0 AL1 geschlossen, bei Netz-Aus oder Störung ist der Kontakt AL0 AL2 geschlossen.
- C036=01 "Öffner" (Betätigung des Relais im ausgeschalteten Zustand), d. h. bei Netz-Ein, betriebsbereitem Frequenzumrichter und Netz-Aus ist der Kontakt AL0 -AL2 geschlossen, bei Störung ist der Kontakt AL0 - AL1 geschlossen.


Bei Verwendung von Schließer- [AL1] und Öffner-kontakten [AL2] ist der Status des Relais nicht direkt ersichtlich. Beim Ausschalten besteht die Möglichkeit den Status des Relais zu ändern. Die Grundeinstellung ist, wie rechts dargestellt, das Alarm-Signal (C026=05). Parameter C036=01 stellt das Relais als "Öffner"-Funktion ein (Spule wird angesteuert). Bestimmte Systemanforderungen erfordern einen Ausschaltvorgang des Umrichters um Alarmsignale an externe Baugruppen weiterzuleiten.

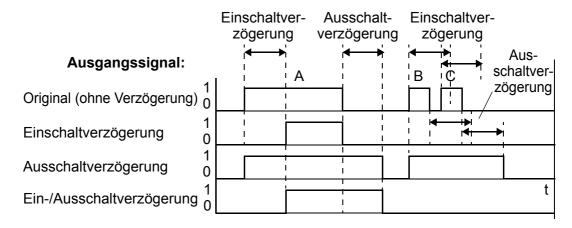
Das Relais kann auch für andere Ausgangsfunktionen, wie z. B. als RUN-Signal (C026=00), verwendet werden. Für dieses Ausgangssignal muss der Status beim Ausschalten NICHT geändert werden (C036=0). Die Darstellung rechts zeigt die Einstellung für diesen Fall.

Wird das Relais nicht für ein Alarmsignal verwendet, kann trotzdem ein Alarmausgang am Umrichter programmiert werden. In diesem Fall wird einer der Transistorausgänge an den Steuerklemmen [11] oder[12] dafür benutzt.



Relais wird beim Einschalten angesprochen, Alarmsignal AUS




Relais wird beim Einschalten nicht angesprochen, RUN-Signal AUS

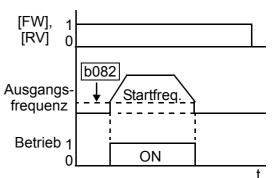
#### Ausgänge Ein-/Ausschaltverzögerung

Die Transistorausgänge an den Klemmen [11], [12] und der Relais-Ausgang haben einstellbare Ein- und Ausschaltverzögerungen. Jeder Ausgang kann sowohl einschalt- oder/und ausschaltverzögert geschaltet werden. Die Verzögerungszeit kann von 0,1 - 100,0 Sekunden eingestellt werden. Diese Möglichkeiten sind bei Anwendungen nützlich, die ein exaktes Zeitverhalten für externe Baugruppen benötigen.

Das untere Zeitdiagramm zeigt ein originales Ausgangssignal (obere Reihe) und das resultierende Signal nach Einstellung der Verzögerungszeiten.

- **Originalsignal** Der Signalverlauf hat drei Impulse mit den Bezeichnungen "A", "B" und "C".
- Einschaltverzögerung Impuls A wird durch den Wert der Einschaltverzögerung verkürzt, Impuls B und C werden nicht gesetzt, da sie kürzer als die Verzögerungszeit sind.
- Ausschaltverzögerung Impuls A wird um den Wert der Aussschaltverzögerung verlängert. Bei Impuls B und C gibt es keine getrennten Signale. Die Ausschaltverzögerungen überschneiden die einzelnen Signale.
- **Ein-/Ausschaltverzögerung** Impuls A wird um den Wert der Einschaltverzögerung verkürzt und um den Wert der Ausschaltverzögerung verlängert. Impuls B und C werden nicht berücksichtigt, da sie kürzer als die Verzögerungszeit sind.




Zur Einstellung der Ein-/Ausschaltverzögerung verwenden Sie folgende Tabelle.

| Funktion | Beschreibung                              | Bereich       | Grundwerte |
|----------|-------------------------------------------|---------------|------------|
| C144     | Digital-Ausgang [11] Einschaltverzögerung | 0,0 - 100,0 s | 0,0        |
| C145     | Digital-Ausgang [11] Ausschaltverzögerung | 0,0 - 100,0 s | 0,0        |
| C146     | Digital-Ausgang [12] Einschaltverzögerung | 0,0 - 100,0 s | 0,0        |
| C147     | Digital-Ausgang [12] Ausschaltverzögerung | 0,0 - 100,0 s | 0,0        |
| C148     | Relais-Ausgang Einschaltverzögerung       | 0,0 - 100,0 s | 0,0        |
| C149     | Relais-Ausgang Ausschaltverzögerung       | 0,0 - 100,0 s | 0,0        |

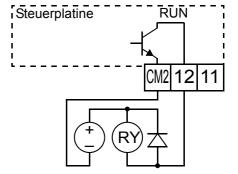
Beachten Sie, dass jeder digitale Ausgang in diesem Abschnitt mit der Funktion der Ein-/Ausschaltverzögerungen kombiniert werden kann.

#### Signal "Betrieb"

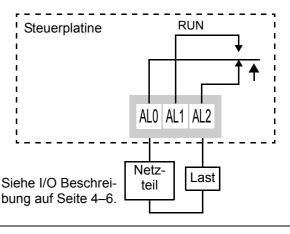
Bei der Funktion Betrieb [RUN] an einer Ausgangsklemme wird ein Signal ausgegeben, wenn der Umrichter im RUN-Modus ist. Die Schaltlogik ist gemäß Funktion C31/C32 "Schließer", also "Active High" und die Transistorausgänge "Open-Collector" schalten gegen CM2.



Klemme 11/12 "Schließer" (C031/C032 = 00) Relais "Öffner" (C036 = 01)


**Beschreibung** 

| Param<br>Nr.          | Symbol | Name              | Status | Beschreibun                                                   |
|-----------------------|--------|-------------------|--------|---------------------------------------------------------------|
| 00                    | RUN    | Betrieb           | ON     | Umrichter im RUN-Modus                                        |
|                       |        |                   | OFF    | Umrichter im STOP-Modus                                       |
| Mögliche<br>Ausgänge: |        | 11, 12, AL0 – AL2 |        | Beispiel Klemmen [11] und 12<br>Ausgangs-Konfiguration - sieh |
| Einstellungen:        |        | (keine)           |        | Steuerplatine                                                 |


#### **HINWEIS:**

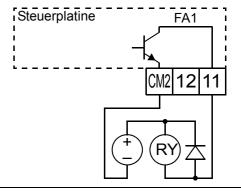
- Das Betriebssignal [RUN] wird immer dann ausgegeben, wenn die Startfrequenz (b082) überschritten wird. Die Startfrequenz ist die anfängliche Ausgangsfrequenz beim Einschal-
- Das Anschlussbeispiel der Klemme [12] schaltet eine Relais-Spule. Verwenden Sie dabei eine Diode in Sperrrichtung (Freilaufdiode), um Beschädigungen am Transistorausgang durch Spannungsspitzen zu vermeiden.

piel Klemmen [11] und 12 (Grundwerte gangs-Konfiguration - siehe Seite 3–48):

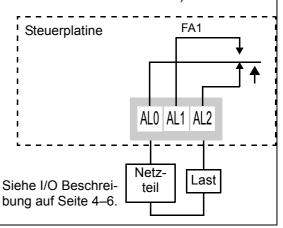


Beispiel Klemmen [AL0], [AL1], [AL2] (Notwendige Ausgangs-Konfiguration siehe Seite 4-37 und 3-48):




#### Signal "Frequenz erreicht"

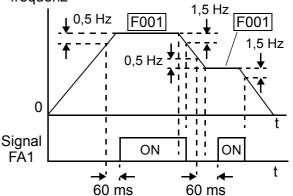
Die Ausgangssignale "Frequenz erreicht" erleichtert externen Systemen die Geschwindigkeit des Umrichters zu erfassen. Dieser Ausgang [FA1] wird geschaltet, wenn die Ausgangsfrequenz den unter F001 eingegebenen Wert erreicht. Die Funktion [FA2] schaltet einen Ausgang bei Überschreiten einer programmierbaren Frequenz im Hochlauf (C042) bzw. Unterschreiten einer programmierbaren Frequenz im Runterlauf (C043). Beim Hoch- und Runterlaufen kann ein Ausgang bei unterschiedlichen Frequenzen geschaltet werden. Alle Signalwechsel haben Hysterese und unterdrücken das Flattern des Ausgangs wenn sich die Frequenz im Grenzbereich befindet.


| Param<br>Nr.          | Symbol | Name                   | Status | Beschreibung                                                                 |
|-----------------------|--------|------------------------|--------|------------------------------------------------------------------------------|
| 01                    | FA1    | Sollwert erreicht      | ON     | Erreichen der eingestellten Frequenz                                         |
|                       |        |                        | OFF    | Umrichterausgang ist ausgeschaltet oder der Wert ist noch nicht erreicht     |
| 02                    | FA2    | Sollwert überschritten | ON     | Überschreiten der unter C042 eingestellten Frequenz während des Hochlaufs    |
|                       |        |                        | OFF    | Unterschreiten der unter C043 eingestellten Frequenz während des Runterlaufs |
| Mögliche<br>Ausgänge: |        | 11, 12, AL0 – AL2      |        | Beispiel (Grundwerte Ausgangs-Konfiguration - siehe Seite 3–48):             |
| Einstellur            | ngen:  | (keine)                |        |                                                                              |

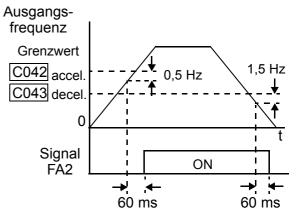
#### **HINWEIS:**

- Für die meisten Anwendungen wird nur ein Typ dieser Art von Ausgängen benötigt (siehe Beispiele). Trotzdem ist es möglich beide Arten [FA1] und [FA2] zu verwenden.
- Jeder erreichte Grenzwert bei Beschleunigung wird 0,5Hz früher eingeschaltet.
- Jeder erreichte Grenzwert bei Verzögerung wird 1,5Hz verzögert ausgeschaltet.
- Verzögerungszeit des Ausgangs beträgt 60ms.
- Das Anschlussbeispiel der Klemme [12] schaltet eine Relais-Spule. Verwenden Sie dabei eine Diode in Sperrrichtung (Freilaufdiode) um Beschädigungen am Transistorausgang durch Spannungsspitzen zu vermeiden.




Beispiel Klemmen [AL0], [AL1], [AL2] (Notwendige Ausgangs-Konfiguration siehe Seite 4-37 und 3-48):

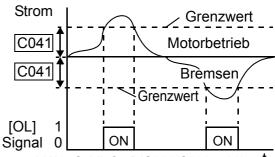



Der Ausgang [FA1] wird geschaltet, wenn die Ausgangsfrequenz den unter F001 erreichten Grenzwert erreicht hat. In der rechten Darstellung wird der Ausgang [FA1] geschaltet, wenn die Frequenz 0,5Hz unterhalb oder 1,5Hz oberhalb des eingestellten Wertes ist. Dieser Bereich (1Hz) unterdrückt das Flattern des Ausgangs bei Erreichen des Grenzwertes. Sie schaltet den Ausgang etwas früher, vor Erreichen des Grenzwertes. Der Ausschaltpunkt ist dann etwas später. Das Zeitverhalten wird weiterhin durch eine Verzögerung von 60 ms verändert. Beachten Sie die Charakteristik des Schaltsignals "Active Low", infolge der Ausgänge "Open-Collector".

Der Ausgang [FA2] arbeitet nach dem gleichen Prinzip. Es werden zwei getrennte Grenzbereiche, wie rechts dargestellt, verwendet. Dabei kann der Wert für Beschleunigung und für Verzögerung getrennt eingestellt werden. Mit Parameter C042 wird das Schalten des Ausgangs bei Beschleunigung eingegeben und mit Parameter C043 für das Schalten bei Verzögerung. Der Schaltzustand ist "Active Low" und hat eine Verzögerung von 60 ms nach Erreichen des Grenzwertes. Bei unterschiedlichen Werten für Beschleunigung und Verzögerung handelt es sich um eine unsymmetrische Ausgangsfunktion. Es kann jeder gewünschte Grenzwert verwendet werden.






Klemme 11/12 "Schließer" (C031/C032 = 00) Relais "Öffner" (C036 = 01)



Klemme 11/12 "Schließer" (C031/C032 = 00) Relais "Öffner" (C036 = 01)

#### Signal "Überlast"

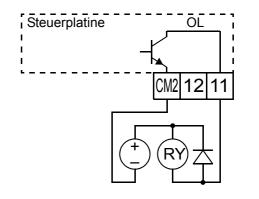
Bei Überschreiten des voreingestellten Stroms wird der Ausgang [OL] eingeschaltet. In Parameter C041 kann der Grenzwert für die Überlast eingestellt werden. Die Überlasterkennung wirkt beim Motorbetrieb und beim generatorischen Bremsen. Der Ausgang ist ein Transistorausgang "Open-Collector" und der Schaltzustand ist "Active Low".



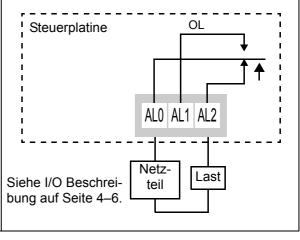
Klemme 11/12 "Schließer" (C031/C032 = 00) Relais "Öffner" (C036 = 01)

Beschreibung

Ausgangsstrom ist größer als der eingestellte Grenzwert des Überlastsignals


Ausgangsstrom ist kleiner als der eingestellte Grenzwert des Überlastsignals

| Param<br>Nr.         | Symbol | Name              | Status |
|----------------------|--------|-------------------|--------|
| 03                   | OL     | Überlast-Alarm    | ON     |
|                      |        |                   | OFF    |
| Mögliche<br>Ausgänge | e:     | 11, 12, AL0 – AL2 |        |
| Einstellur           | ngen:  | C041              |        |

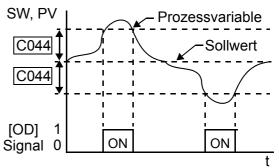

#### **HINWEIS:**

- Der Grundwert ist 100%. Zur Änderung des Wertes muss der Parameter C041 verändert werden (Überlast-Alarm).
- Die Genauigkeit dieser Funktion ist die gleiche wie beim analogen Stromausgang [AM] (Siehe "Analog-Ausgang" auf Seite 4–56).
- Das Anschlussbeispiel der Klemme [12] schaltet eine Relais-Spule. Verwenden Sie dabei eine Diode in Sperrrichtung (Freilaufdiode) um Beschädigungen am Transistorausgang durch Spannungsspitzen zu vermeiden.

Beispiel (Notwendige Ausgangs-Konfiguration - siehe Seite 3–48):



Beispiel Klemmen [AL0], [AL1], [AL2] (Notwendige Ausgangs-Konfiguration - siehe Seite 4–37 und 3–48):



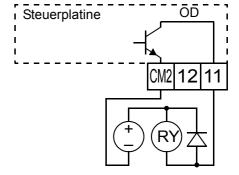

der

der

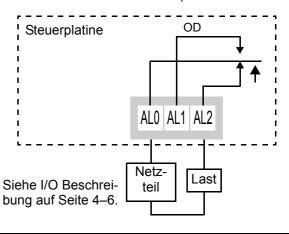
#### Signal "Regelabweichung überschritten (PID-Regler)"

Die PID-Regelabweichung ist die Differenz zwischen Sollwert und der Prozessvariablen (Istwert). Bei Überschreiten der voreingestellten Größe von Parameter C044, wird der Ausgang mit der Funktion [OD] geschaltet. Sehen Sie auch "PID-Regler" auf Seite 4-57.




Klemme 11/12 "Schließer" (C031/C032 = 00) Relais "Öffner" (C036 = 01)

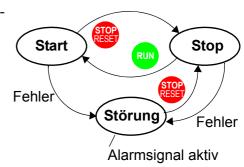
| <del>_</del>          |        |                               |        |                                                              |
|-----------------------|--------|-------------------------------|--------|--------------------------------------------------------------|
| Param<br>Nr.          | Symbol | Name                          | Status | Beschreibung                                                 |
| 04                    | OD     | Regelabweichung überschritten | ON     | PID-Regelabweichung ist größer als eingestellte Grenzwert    |
|                       | (PID-  | (PID-Regler)                  | OFF    | PID-Regelabweichung ist kleiner als eingestellte Grenzwert   |
| Mögliche<br>Ausgänge: |        | 11, 12, AL0 – AL2             |        | Beispiel (Notwendige Ausgangs-Konfigura - siehe Seite 3–48): |
| Einstellungen:        |        | C044                          |        | Steuerplatine OD                                             |


#### **HINWEIS:**

- Der Grundwert ist 3%. Zur Änderung des Wertes muss der Parameter C044 verändert werden (Regelabweichung).
- Das Anschlussbeispiel der Klemme [12] schaltet eine Relais-Spule. Verwenden Sie dabei eine Diode in Sperrrichtung (Freilaufdiode) um Beschädigungen am Transistorausgang durch Spannungsspitzen zu vermeiden.

uration




Beispiel Klemmen [AL0], [AL1], [AL2] (Notwendige Ausgangs-Konfiguration siehe Seite 4-37 und 3-48):



#### Signal "Störung"

Ein Alarmsignal ist aktiv, wenn ein Fehler aufgetreten ist und der Umrichter befindet sich im Stör-Modus. Bei Löschen des Fehlers wird das Alarmsignal inaktiv.

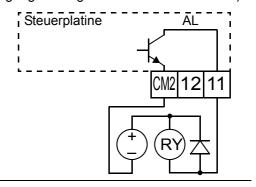
Zwischen dem *Alarmsignal* [AL] und den *Kontakten* des Alarm-Relais [AL0], [AL1], [AL2] muss unterschieden werden. Das Signal [AL] ist eine Funktion für die Ausgangsklemmen [11], [12] oder dem Relais-Ausgang. Das Relais wird in den meisten Fällen für eine Störung [AL] verwendet.



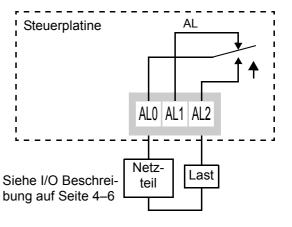
Die Transistorausgänge ([11] oder [12]) sollten für einen logischen Signalaustausch oder ein Relais (max. 50mA) verwendet werden. Der Relais-Ausgang (potentialfreier Wechslerkontakt) kann für höhere Strombelastungen verwendet werden (min. 10mA).

| Param<br>Nr.          | Symbol | Name              | Status |   |
|-----------------------|--------|-------------------|--------|---|
| 05                    | AL     | Alarm Signal      | ON     | ١ |
|                       |        |                   | OFF    | ł |
| Mögliche<br>Ausgänge: |        | 11, 12, AL0 – AL2 |        | 1 |
| Einstellungen:        |        | C026, C036        |        |   |

#### **HINWEIS:**


- In der Grundeinstellung ist das Relais als Öffner (C036=01) konfiguriert. Erläuterungen stehen auf der nächsten Seite.
- Ist der Relais-Ausgang als Öffner programmiert, tritt bei Schließen des Kontakts eine Verzögerungszeit, die kleiner als 2 Sekunden ist, auf.
- Die Klemmen [11] und [12] sind Transistorausgänge "Open-Collector". Die elektrischen Voraussetzungen der Funktion [AL] unterscheiden sich von den Klemmen des Relais-Ausgangs [AL0], [AL1], [AL2].
- Das Signal der Transistorausgänge hat eine Verzögerungszeit (300ms) nach Erkennen des Fehlers.
- Die Beschreibung der Relais-Kontakte steht in Abschnitt "Beschreibung der Steuersignale" auf Seite 4–6. Die Kontaktstellung für verschiedene Bedingungen werden auf der nächsten Seite beschrieben.

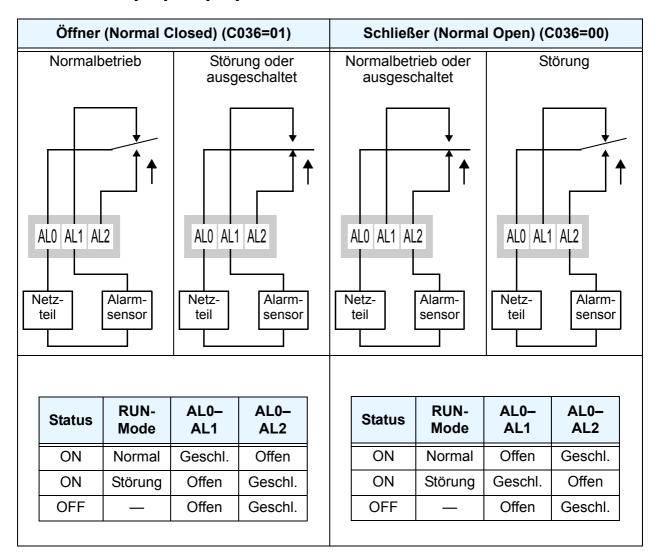
Beispiel Klemmen [11] oder [12] (Notwendige Ausgangs-Konfiguration - siehe Seite 3–48):


Kein Alarmsignal seit letzter Quittiertung

Nicht quittiertes Alarmsignal

**Beschreibung** 




Beispiel Klemmen [AL0], [AL1], [AL2] (Notwendige Ausgangs-Konfiguration - siehe Seite 3–48):



Das Alarm-Relais kann auf zwei Arten konfiguriert werden:

- Störung/Spannungsausfall Das Alarm-Relais ist werksseitig als Öffner (C036=01) programmiert (Darstellung unten links). Ein externer Alarmkreis zur Drahtbruchüberwachung wird an den Klemmen [AL0] und [AL1] angeschlossen. Nach Einschalten und einer kurzen Verzögerung (< 2 Sekunden) schaltet das Relais und der Alarmkreis ist geschlossen. Bei Auftreten einer Störung oder Ausschalten des Umrichters schaltet das Relais und öffnet den Alarmkreis. Dieses führt bei Drahtbruchüberwachung zu einer Störung.</li>
- Störung Alternativ kann das Relais als Schließer (C036=00) programmiert werden (Darstellung unten rechts). Ein externer Alarmkreis zur Drahtbruchüberwachung wird an den Klemmen [AL0] und [AL2] angeschlossen. Nach Einschalten des Umrichters wird das Relais nur nach Auftreten einer Störung geschaltet und öffnet den Alarmkreis. In dieser Einstellung wird der Alarmkreis jedoch nicht bei Spannungsausfall geöffnet.

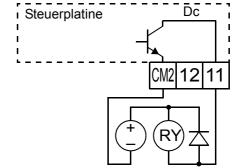
Verwenden Sie die passenden Relais-Einstellungen entsprechend der Systemanforderung. Beachten Sie, dass ein geschlossener externer Alarmkreis keine Störmeldung hervorruft (Drahtbruchüberwachung). In diesem Fall verwenden Sie die entsprechende Klemme [AL1] oder [AL2].



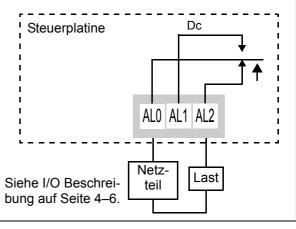
#### Signal "Unterbrechung Analog-Eingang"

Funktion bei Steuerung des Umrichters über einen externen Sollwert. Bei fehlendem Eingangssignal an den Klemmen [O] / [OI] läuft der Motor bis zum Stop herunter. Dies wird durch die Funktion [Dc] anderen Steuerungen mitgeteilt.

Klemme [O] Fehlendes Spannungssignal - Mit Parameter b082 wird die Startfrequenz eingestellt. Dies ist dann die kleinste Ausgangsfrequenz bei vorhandenem Sollwert. Ist der Wert des Analog-Eingangs an Klemme [O] kleiner als die ansprechende Startfrequenz (b082), schaltet der Umrichter den Ausgang mit der Funktion [Dc] und zeigt damit ein fehlendes Eingangssignal an.


Klemme [OI] Fehlendes Stromsignal - Die Klemme [OI] benötigt ein Signal von 4 -20mA. Bei 4mA beginnt der Eingangsbereich. Sinkt der Strom unter 4mA, ist dies der Grenzbereich zur Erkennung des fehlenden Eingangssignals.

Das fehlende Eingangssignal ist keine Störung. Bei Überschreiten des Signals über den Wert in Parameter b082, wird der Ausgang mit der Funktion [Dc] ausgeschaltet. Da dies keine Störung ist, ist ein Quittieren nicht notwendig


| Param<br>Nr.              | Symbol | Name                            | Status | Beschreibung                                                                            |  |
|---------------------------|--------|---------------------------------|--------|-----------------------------------------------------------------------------------------|--|
| 06                        | Dc     | Unterbrechung<br>Analog-Eingang | ON     | Eingangswert an Klemme [O] < b082 oder Eingangswert an Klemme [OI] < 4mA.               |  |
|                           |        |                                 | OFF    | Kein unterbrochenes Eingangssignal                                                      |  |
| Mögliche 11,<br>Ausgänge: |        | 11, 12, AL0 – AL2               |        | Beispiel Klemmen [11] oder [12] (Notwendige Ausgangs-Konfiguration - siehe Seite 3–48): |  |
| Einstellur                | ngen:  | A001=01, b082                   |        | Steuerplatine Dc                                                                        |  |

#### **HINWEIS:**

- Der Ausgang [Dc] kann ein unterbrochenes Analogeingangssignal im STOP-Modus und im RUN-Modus erkennen.
- Das Anschlussbeispiel der Klemme [12] schaltet eine Relais-Spule. Verwenden Sie dabei eine Diode in Sperrrichtung (Freilaufdiode) um Beschädigungen am Transistorausgang durch Spannungsspitzen zu vermeiden.



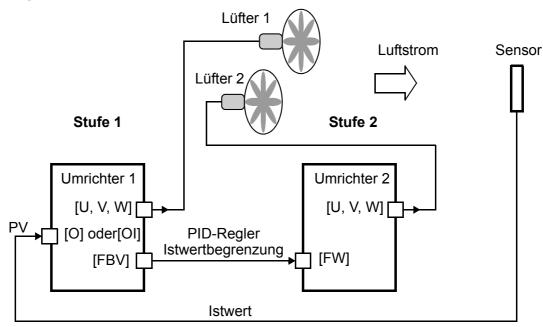
Beispiel Klemmen [AL0], [AL1], [AL2] (Notwendige Ausgangs-Konfiguration siehe Seite 4-37 und 3-48):



#### Signal "Istwertbegrenzung PID-Regler"

Der Umrichter hat einen integrierten PID-Regler für eine Zwei-Stufen-Regelung (Istwert-überwachung), für Anwendungen aus der Lüftungs- oder Klimatechnik (HVAC). Bei idealer Regelungsumgebung ist ein einfacher PID-Regler ausreichend. Unter bestimmten Bedingungen könnte die maximale Ausgangsleistung des PID geregelten Frequenzumrichters nicht ausreichen, um den Istwert (IW) auf den Wert des Sollwertes (SW) zu halten. Der Frequenzumrichter ist dabei ausgelastet. Eine einfache Lösung ist das Hinzufügen eines 2. Antriebes, um zusätzliche Luftleistung zu liefern. Bei richtiger Auslegung wird der zusätzliche Antrieb den Istwert in den gewünschten Bereich bringen.

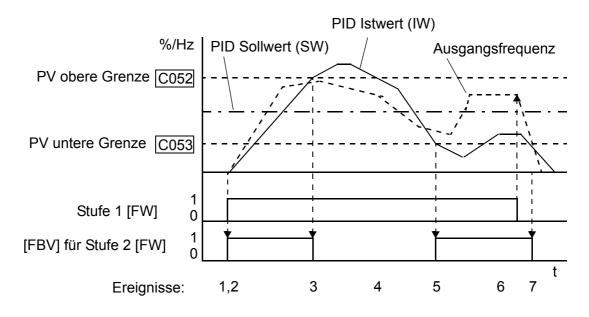
Regelungen mit Zwei-Stufen-Methode haben für bestimmte Anwendungen Vorteile:


- Die zweite Stufe ist nur bei ungünstigen Bedingungen eingeschaltet, so dass bei normalen Bedingungen Energie eingespart werden kann.
- Das Zuschalten der zweiten Stufe ist günstiger, als dauernd eine Regelung von den Dimensionen der ersten Stufe mitlaufen zu lassen.
- Beim Einschalten unterstützt die Verstärkung durch die zweite Stufe die Prozessvariable, um den gewünschten Sollwert schneller zu erreichen.
- Durch Zuschalten der 2. Stufe über einen Umrichter, kann durch Einstellen der Ausgangsfrequenz die Unterstützung durch die 2. Stufe variabel gestaltet werden.

Das Beispiel zeigt eine Zwei-Stufen-Regelung für folgende Funktionen:

- Stufe 1 Umrichter 1 wird mit einem PID-Regler zur Lüftersteuerung betrieben.
- Stufe 2 Umrichter 2 arbeitet im Normalbetrieb zur zusätzlichen Lüftersteuerung.

Stufe 1 regelt die Belüftung eines Gebäudes. An bestimmten Tagen ändern sich die Belüftungsverhältnisse durch Öffnen großer Türen oder Tore. Dadurch kann die Stufe 1 den gewünschten Luftstrom nicht liefern (IW sinkt unter SW). Umrichter 1 erkennt den niedrigen Wert des Istwertes (IW) und die PID-Regelung schaltet den Ausgang für die untere Istwertbegrenzung [FBV] (2. Stufe).

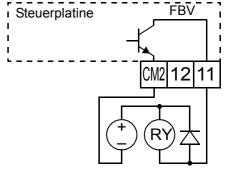

Dieses Signal startet dann zusätzlich den Umrichter 2, um einen größeren Luftstrom zu erzeugen.



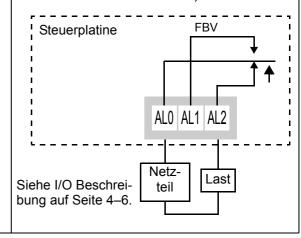
Zur Verwendung der Istwertbegrenzung muss die obere und untere Grenze des Istwertes in den Parametern C053 und C052 angegeben werden. Im unten dargestellten Zeitdiagramm werden die Grenzwerte des Umrichters für Stufe 1 gezeigt. Damit wird die Stufe 2 über einen Umrichter mit der Funktion [FBV] ein- und ausgeschaltet. Der Sollwert und die Istwertgrenzen werden in Prozent angegeben. Die Ausgangsfrequenz (Hz) wird überlagernd im gleichen Diagramm dargestellt.

Bei Beginn der Regelung geschieht folgendes (entsprechend dem Zeitdiagramm):

- 1. Umrichter der Stufe 1 wird durch einen Start-Befehl [FW] gestartet.
- 2. Umrichter der Stufe 1 schaltet den Ausgang mit der Funktion [FBV], weil der Istwert unter der Grenze von C053 liegt. Somit erfolgt bei Anlauf eine Unterstützung durch Stufe 2.
- 3. Der Istwert steigt an, erreicht die obere Grenze von C053 und schaltet den Ausgang mit der Funktion [FBV] ab. Damit wird die nicht länger benötigte Stufe 2 abgeschaltet
- **4.** Bei Verringerung des Istwerts ist nur Stufe 1 in Betrieb und befindet sich in einem linearen Regelbereich. Dieser Bereich ist in einem richtig eingestelltem System der Normalbetrieb.
- **5.** Der Istwert verringert sich weiter bis die untere Grenze erreicht wird (externe Beeinflussung der Regelung). Der Umrichter von Stufe 1 schaltet den Ausgang mit der Funktion [FBV] und der Umrichter von Stufe 2 unterstützt wieder die Stufe 1.
- 6. Nach Ausschalten der Regelung wird der Umrichter der Stufe 1 heruntergefahren.
- **7.** Bei Stop des Umrichters von Stufe 1 wird automatisch der Ausgang mit der Funktion [FBV] ausgeschaltet und der Umrichter für Stufe 2 stoppt ebenfalls.




Die Beschreibung der Steuerklemme [FBV] erfolgt in der Tabelle auf der folgenden Seite.

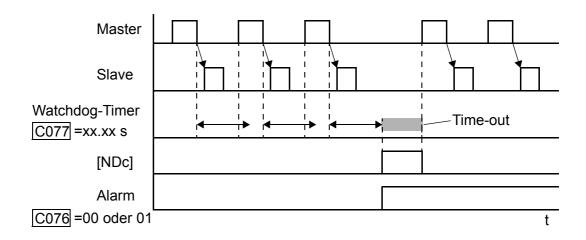

| Param<br>Nr.         | Symbol | Name               | Status | Beschreibung                                                                                                                           |
|----------------------|--------|--------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------|
| 07                   | FBV    | Istwertüberwachung | ON     | Einschalten bei Umrichter im RUN-<br>Modus und wenn Istwert kleiner als das<br>Rückführsignal (C053) ist                               |
|                      |        |                    | OFF    | <ul> <li>Ausschalten bei Überschreiten des<br/>Rückführsignals (C052)</li> <li>Ausschalten bei Umrichter im STOP-<br/>Modus</li> </ul> |
| Mögliche<br>Ausgänge | ə:     | 11, 12, AL0 – AL2  |        | Beispiel (Notwendige Ausgangs-Konfiguration - siehe Seite 3–48):                                                                       |
| Einstellur           | ngen:  | A076, C052, C053   |        | Steuerplatine                                                                                                                          |

#### **HINWEIS:**

- Das Signal [FBV] ist für eine Zwei-Stufen-Regelung (Istwertbegrenzung). Die obere und untere Istwertgrenze (C052/C053) können nicht als Grenzwerte für eine Störung verwendet werden. Das Signal [FBV] unterstützt keine Störmeldung des PID-Reglers.
- Das Anschlussbeispiel der Klemme [12] schaltet eine Relais-Spule. Verwenden Sie dabei eine Diode in Sperrrichtung (Freilaufdiode), um Beschädigungen am Transistorausgang durch Spannungsspitzen zu vermeiden.

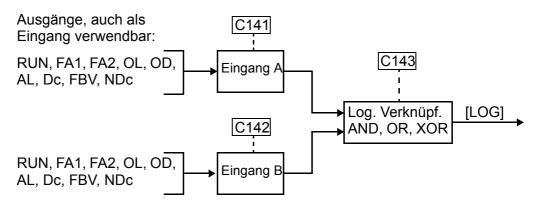


Beispiel Klemmen [AL0], [AL1], [AL2] (Notwendige Ausgangs-Konfiguration siehe Seite 4-37 und 3-48):




#### Signal "Netzwerkfehler"

Das Signal "Netzwerkfehler" gibt Auskunft über den Zustand der Netzwerk-Kommunikation. Der Umrichter hat, zur Überwachung des Netzwerks, eine programmierbare Überwachungszeit (Watchdog-Timer). Mit Parameter C077 wird diese Überwachungszeit eingestellt. Kommt es, über diese Zeit hinaus, zu keiner Kommunikation wird der Ausgang gesetzt.


| Param<br>Nr.                                         | Symbol                                                    | Name                                                                                                          | Status         | Beschreibung                                                                                                                                                                                                   |
|------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 08                                                   | NDc                                                       | Netzwerkfehler                                                                                                | ON             | Bei Kommunikationsverlust über die eingestellte Überwachungszeit hinaus (Parameter C077)                                                                                                                       |
|                                                      |                                                           |                                                                                                               | OFF            | Normale Kommunikation                                                                                                                                                                                          |
| Mögliche<br>Ausgänge                                 |                                                           | 11, 12, AL0 – AL2                                                                                             |                | Beispiel (Notwendige Ausgangs-Konfiguration - siehe Seite 3–48):                                                                                                                                               |
| <ul><li>(Watchous)</li><li>Bei dea (C076=)</li></ul> | :<br>ierung der<br>dog-Timer)<br>ktiviertem<br>02) kann r | C076, C077  Überwachungszeit ) durch C077=00,00: Kommunikationsfeh nit dem Signal "Netz it (C077) eingestellt | ıler<br>zwerk- | Beispiel Klemmen [AL0], [AL1], [AL2] (Notwendige Ausgangs-Konfiguration - siehe Seite 4–37 und 3–48):    Steuerplatine   NDc     Steuerplatine   NDc     AL0 AL1 AL2     Siehe I/O Beschreibung auf Seite 4–6. |

Der Umrichter kann zusätzlich auf verschiedene Arten bezüglich der Überwachungszeit angesprochen werden. Das gewünschte Ansprechverhalten wird mit Parameter C076 eingestellt. Dabei wird eingestellt, ob der Umrichter einen Fehler (Störung E60) ausgibt, der Motor bis zum Stop runterläuft oder ausläuft. Mit Parameter C076 und C077 wird der Netzwerkfehler, die Überwachungszeit und die Reaktion des Umrichters eingestellt.



#### Logische Verknüpfungen

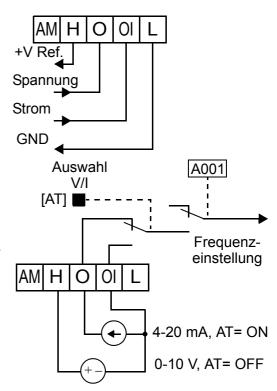
Der Umrichter hat die Möglichkeit logische Funktionen zu verarbeiten. Es können alle 9 Wahlmöglichkeiten der Ausgänge für die beiden Eingangsvariablen (C141 und C142) verwendet werden. Anschließend konfigurieren Sie die beiden Eingangsvariablen mit den gewünschten logischen Verknüpfungen UND, ODER oder XOR (C143).



| Eingang             | szustand            | [LOG] Ausgangszustand |                   |                  |  |
|---------------------|---------------------|-----------------------|-------------------|------------------|--|
| Eingang A<br>(C141) | Eingang B<br>(C142) | UND<br>(C143=00)      | ODER<br>(C143=01) | XOR<br>(C143=02) |  |
| 0                   | 0                   | 0                     | 0                 | 0                |  |
| 0                   | 1                   | 0                     | 1                 | 1                |  |
| 1                   | 0                   | 0                     | 1                 | 1                |  |
| 1                   | 1                   | 1                     | 1                 | 0                |  |

| Param<br>Nr.         | Symbol | Name                    | Status | Beschreibung                                                                                                                                                                  |
|----------------------|--------|-------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 09                   | LOG    | Logische<br>Verknüpfung | ON     | Wenn das Ergebnis der logischen<br>Verknüpfung in C143 "1" ist                                                                                                                |
|                      |        |                         | OFF    | Wenn das Ergebnis der logischen<br>Verknüpfung in C143 "0" ist                                                                                                                |
| Mögliche<br>Ausgänge |        | 11, 12, AL0 – AL2       |        | Beispiel (Notwendige Ausgangs-Konfiguration - siehe Seite 3–48):                                                                                                              |
| HINWEIS              |        | C141, C142, C143        |        | Beispiel Klemmen [AL0], [AL1], [AL2] (Notwendige Ausgangs-Konfiguration - siehe Seite 4–37 und 3–48):  Steuerplatine  LOG  AL0 AL1 AL2  Siehe I/O Beschreibung auf Seite 4–6. |

### Signal "Kommunikation abgebrochen"


Wird ein optionales Kommunikationsmodul für CANopen verwendet, dann signalisiert der entsprechend programmierte Digital-Ausgang mit der Funktion "OPDc" folgenden Zustand: Kommunikation des Netzwerkes in Ordnung / nicht in Ordnung.

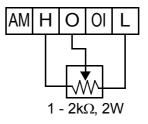
| Param<br>Nr.           | Symbol | Name                      | Status | Beschreibung                                                                                                                                                                   |
|------------------------|--------|---------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10                     | OPDc   | Kommunikation abgebrochen | ON     | Kommunikation des CANopen-Netzwerkes in Ordnung                                                                                                                                |
|                        |        |                           | OFF    | Kommunikation des CANopen-Netzwerkes nicht in Ordnung                                                                                                                          |
| Mögliche<br>Ausgänge   | e:     | 11, 12, AL0 – AL2         |        | Beispiel (Notwendige Ausgangs-Konfiguration - siehe Seite 3–48):                                                                                                               |
| Einstellur<br>HINWEIS: |        | P044                      |        | Steuerplatine                                                                                                                                                                  |
| Aktivierumöglich       |        | ei gesteckter Options     | skarte | Beispiel Klemmen [AL0], [AL1], [AL2] (Notwendige Ausgangs-Konfiguration - siehe Seite 4–37 und 3–48):  Steuerplatine  OPDc  AL0 AL1 AL2  Siehe I/O Beschreibung auf Seite 4–6. |

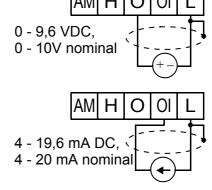
# **Analog-Eingänge**

Der Umrichter L200 besitzt 2 Analogeingänge zur Frequenzsollwertvorgabe (O - L für 0-10V und OI - L für 4-20mA).

Bei Verwendung des Spannungs- oder Stromeingangs erfolgt die Umschaltung über einen digitalen Eingang mit der Funktion [AT]. Bei ausgeschaltetem Eingang ist der Spannungseingang [O] aktiv, bei eingeschaltetem Eingang ist der Stromeingang [OI] aktiv. Die Funktion [AT] ist im Kapitel "Aktivierung Sollwerteingang OI" auf Seite 4–23 beschrieben. Zur Steuerung über Analogeingänge muss der Parameter A001 = 01 sein.







**HINWEIS:** Ist kein Eingang mit der Funktion [AT] konfiguriert, werden die Werte am Spannungs- und Stromeingang zum gewünschten Eingangswert addiert.

Eine Möglichkeit zur Steuerung der Ausgangsfrequenz ist ein externes Potentiometer. Das Potentiometer an das interne 10V-Signal zwischen Klemme [H] und [L] anschließen, die Klemme [O] ist das Eingangssignal. Bei ausgeschalteter Funktion [AT] ist der Spannungseingang aktiv. Auf Verwendung des richtigen Widerstandwertes für das Potentiometer (1 -  $2k\Omega$ , 2W) achten.

**Spannungseingang** – Der Spannungseingang verwendet die Klemmen [O] und [L]. Schirmung der Signalleitung nur an Klemme [L] anschließen. Nur positive Spannung verwenden.

Stromeingang – Der Stromeingang verwendet die Klemmen [OI] und [L]. Stromquelle Typ Source verwenden, keine Funktion bei Typ Sink! Der Strom fließt dabei in die Klemme [OI] und über die Klemme [L] in die Stromquelle zurück. Die Eingangsimpedanz beträgt  $250\Omega$ . Schirmung der Signalleitung nur an Klemme [L] anschließen.



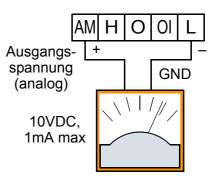


Siehe I/O Beschreibung auf Seite 4-6.

Die folgende Tabelle gibt eine Übersicht über die möglichen Einstellungen der Analog-Eingänge. Parameter A005 und die Funktion

Betrieb und Überwachung

[AT] an der Steuerklemme legen die externe Frequenzvorgabe über die Analog-Eingänge [O] und [OI] fest. Die Klemme [L] ist dabei das Bezugspotential.


| A005 | Eingang [AT]    | Konfiguration Analog-Eingang |
|------|-----------------|------------------------------|
| 00   | OFF             | [O]                          |
|      | ON              | [0]                          |
| 01   | (ohne Funktion) | Summe ([O] + [OI])           |
| 02   | OFF             | [O]                          |
| 02   | ON              | eingebautes Potentiometer    |
| 03   | OFF             | [01]                         |
| 03   | ON              | eingebautes Potentiometer    |

#### Weitere Kapitel zum Thema Analog-Eingänge:

- "Einstellung Sollwertanpassung Analog-Eingang O" auf Seite 3–14
- "Einstellungen Sollwertanpassung Analog-Eingang OI" auf Seite 3–28
- "Analogabgleich" auf Seite 3-53
- "Aktivierung Sollwerteingang OI" auf Seite 4–23
- "Frequenzaddition" auf Seite 4–32
- "Signal "Unterbrechung Analog-Eingang" auf Seite 4–46

# **Analog-Ausgang**

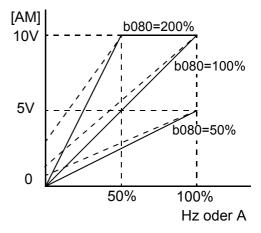
Bei bestimmten Anwendungen ist es nützlich den Umrichter von einem dezentralen Ort oder vom Bedienfeld des Umrichters aus zu überwachen. In einigen Fällen reicht ein Einbauinstrument aus, in anderen Fällen sollen diese Werte von einer SPS aus überwacht werden, um eine Rückmeldung bezüglich der augenblicklichen Frequenz oder des Stroms zu bekommen. Der Analog-Ausgang an der Klemme [AM] bietet die Möglichkeit diese Werte zu erfassen.



Siehe I/O Beschreibung auf Seite 4-6.

Der Umrichter hat einen Analog-Ausgang an

der Klemme [AM]. Das Bezugspotential ist die Klemme [L]. Er kann zur Ausgabe von Frequenz oder Strom verwendet werden. Der Ausgangsspannungsbereich ist 0-10V (nur positive Spannung), ungeachtet der Drehrichtung des Motors. Mit Parameter C028 wird die Funktion [AM], wie unten dargestellt, konfiguriert.


| Funktion | Code | Beschreibung     | Bereich                |
|----------|------|------------------|------------------------|
| C028     | 00   | Ausgangsfrequenz | 0 – max. Frequenz (Hz) |
| 0020     | 01   | Ausgangsstrom    | 0 – 200%               |

Abgleich und Offset des Analog-Ausgangs [AM] ist einstellbar.

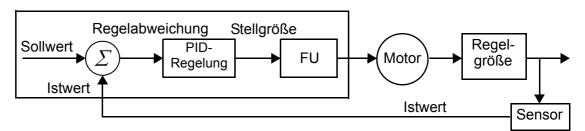
| Funktion | Beschreibung                 | Bereich | Grundwerte |
|----------|------------------------------|---------|------------|
| b080     | [AM] Abgleich Analog-Ausgang | 0 - 255 | 100        |
| C086     | [AM] Offset Analog-Ausgang   | 0 - 10V | 0,0        |

Das Diagramm zeigt die Auswirkungen des Abgleichs. Zum Abgleich des Analog-Ausgangs [AM] beachten Sie folgende Schritte:

- 1. Umrichter muss im Stop-Zustand sein.
- 2. Mit Parameter C086 die Offsetspannung einstellen (entspricht der gestrichelten Linie).
- **3.** Umrichter mit maximaler Geschwindigkeit betreiben.
  - a. Bei Frequenzausgabe [AM] mit b080 den Wert so anpassen, dass bei Maximalfrequenz 10V ausgegeben werden.
  - b. Bei Stromausgabe [AM] mit b080 den Wert so anpassen, dass bei Maximalstrom 10V ausgegeben werden.



## **PID-Regler**

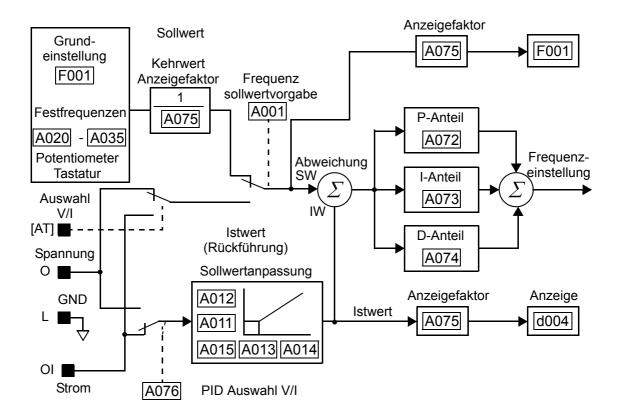

Zur Aktivierung des internen PID-Reglers wird unter Funktion A071, 01 eingegeben. Wird zusätzlich einer der Digital-Eingänge als PID (Funktion C001 ... C005, Eingabe 23) programmiert, so kann der Regler über diesen Eingang deaktiviert werden.

Stellgröße des PID-Reglers ist die Ausgangsfequenz. Die Soll- und Istwerte sind in % normiert. Zur besseren Darstellung können sie mittels Funktion A075 jeweils auf die physikalische Größe umgerechnet werden (z. B. Volumenstrom 0 - 50 m³/h). Der Ausgang des PID-Reglers ist mit 0 Hz (bzw. der unter A062 eingestellten Frequenz) nach unten und mit der unter A004 (bzw. A061) eingegebenen Frequenz nach oben begrenzt.

Der **Istwerteingang** wird unter Funktion A076 angewählt (Analog-Eingang O/0 - 10V oder Analogeingang OI/4 - 20mA). Der **Sollwerteingang** ist dann automatisch der andere, unbelegte Analog-Eingang (bei Eingabe 01 unter Funktion A001). Außerdem kann der Sollwert über das eingebaute Potentiometer (Eingabe 00 unter Funktion A001), über Funktion F001 (Eingabe 02 unter Funktion A001) sowie unter Funktion A020 - A035 als Festwerte vorgegeben werden (die Festwerte haben gegenüber allen anderen Sollwerten Priorität; sie werden über Eingang CF1 - CF4 abgerufen). Die Normierung ist in allen Fällen 0 - 100% bzw. für die Sollwertvorgabe über F001 oder über die Festwerte A020 - A035 entspechend der Einstellung unter A075.

Der Istwert kann über die Funktion A011 - A014 angepasst werden. Sobald der PID-Regler unter Funktion A071 aktiviert wird, ist die Normung unter diesen Funktionen ebenfalls 0 - 100%. Aus diesem Grund muss der Regler zuerst unter Funktion A071 aktiviert werden, bevor alle anderen Funktionen eingestellt werden.

#### **Blockschaltbild**



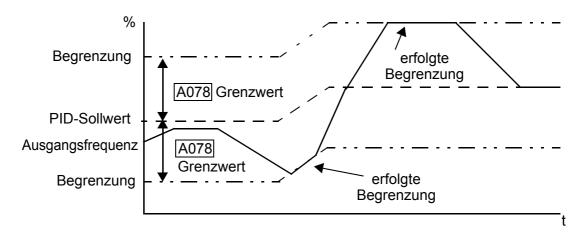

**Anzeige Sollwert: unter F001** 

Anzeige Istwert: unter d004 (Istwert x Anzeigefaktor unter A075)

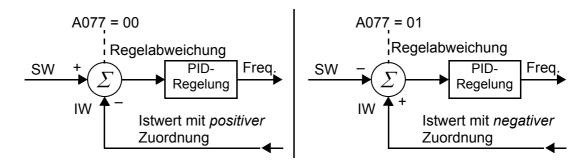
Unter Funktion C044 kann eine Regelabweichung eingegeben werden, bei deren Überschreiten ein entsprechender Ausgang schaltet (Programmierung des Ausgangs unter Funktion C021, C022 oder C026; Parameter 04)

Der I-Anteil des PID-Reglers lässt sich über Digital-Eingang [PIDC] zurücksetzen (Funktion C001 - C005, Eingabe 24; nur zurücksetzen wenn PID-Regler ausgeschaltet ist).




#### **PID-Regler Konfiguration**

Der PID-Regler des Umrichters ist für verschiedene Anwendungen konfigurierbar.


**PID-Regler Ausgangsbegrenzung -** Der PID-Regler hat eine integrierte Funktion für die Ausgangsbegrenzung. Diese Funktion überwacht die Differenz (Regelabweichung) zwischen Soll- und Istwert und wird als prozentualer Anteil angegeben. Die Begrenzung erfolgt in Parameter A078 und wird auch dort beschrieben.

- Ist die Regelabweichung (Sollwert Istwert) kleiner oder gleich des unter A078 eingestellten Wertes, arbeitet der Regler in seinem normalen linearen Bereich.
- Ist die Regelabweichung (Sollwert Istwert) größer als der unter A078 eingestellte Wert, erfolgt eine Anhebung der Ausgangsfrequenz bis der untere Grenzwert nicht mehr erreicht wird.

Das untere Diagramm zeigt die Sollwertänderung des PID-Reglers und das Verhalten der Ausgangsfrequenz bei einer auftretenden Begrenzung.

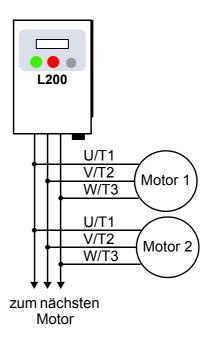


**Invertierung PID-Regler -** Bei typischen Heizungs- und Lüftungsregelungen ist eine Energieerhöhung das Prozessergebnis eines ansteigenden Istwertes (Regelabweichung = Sollwert - Istwert). Bei Kühlungen ist eine Energieerhöhung das Prozessergebnis eines abfallenden Istwertes (Regelabweichung = -Sollwert - Istwert). Mit Parameter A077 kann die Richtung der Regelabweichung eingestellt werden.



#### Weitere Kapitel zum Thema PID-Regler:

- "PID-Regler" auf Seite 3-23
- "PID-Regler Ein-/Ausschalten und Löschen" auf Seite 4–28
- "Signal "Regelabweichung überschritten (PID-Regler)" auf Seite 4–43
- "Signal "Istwertbegrenzung PID-Regler"" auf Seite 4-47


# Konfiguration für Mehrmotorenbetrieb

#### **Parallelanschluss**

Bei einigen Anwendungen ist es notwendig zwei oder mehrere Motoren (Parallelverdrahtung) an einen Umrichterausgang anzuschließen. Eine Förderbandanwendung, bei der zwei separate Förderbänder mit der gleichen Geschwindigkeit betrieben werden, ist eine typische Anwendung für einen Parallelbetrieb. Die Verwendung von zwei Motoren ist dabei preiswerter als die mechanische Kopplung eines Motors für zwei Förderbänder.

Folgende Merkmale bei Anwendung von Mehrmotorenbetrieb sind:

- Der Umrichter muss für die Summe der Motornennströme ausgelegt sein.
- Jeder Motor muss einzeln gegen Überhitzung geschützt werden (z. B. mit Kaltleitern).
- Die Parallelverdrahtung der Motoren muss permanent vorhanden sein (Keine Unterbrechung während des Betriebs).





**HINWEIS:** Die Motorgeschwindigkeiten sind nur theoretisch gleich. Es gibt geringe Unterschiede, begründet in der Last, die die Motoren unterschiedlich drehen lassen. Verwenden Sie den Mehrmotorenbetrieb nicht bei Maschinen mit Mehrachsbetrieb, wo es eine feste Referenzposition zwischen den Achsen gibt.

#### Konfiguration für zwei unterschiedliche Motorentypen

Einige Hersteller haben Maschinen bei denen ein Umrichter zwei unterschiedliche Motoren antreiben soll - wobei jeweils nur ein Motor läuft. Einige Hersteller verkaufen ihre Maschinen auf dem amerikanischen und europäischen Markt. Hier einige Gründe für zwei Motorprofile bei Originalherstellern:

- Die Spannungsversorgung ist für die entsprechenden Märkte unterschiedlich.
- Der erforderliche Motortyp hat unterschiedliche Anwendungsbereiche.

Aus folgenden Gründen werden zwei unterschiedliche Motorprofile benötigt:

- Bei unterschiedlichen Motorlasten ist es notwendig zwei Motorprofile in Bezug auf Motorgeschwindigkeit, Beschleunigung und Verzögerung entsprechend den Motorlasten zur Verfügung zu stellen.
- Bei kleineren Geschwindigkeiten sind zum Beispiel keine Bremsoptionen notwendig, bei größeren Geschwindigkeiten werden diese benötigt.

#### Umschaltung auf 2. Parametersatz im Stillstand

Bei zwei Motorprofilen können zwei Parametersätze im Umrichter abgespeichert werden. Der Umrichter bietet die Möglichkeit, durch Anwahl eines digitalen Eingangs mit der Funktion [SET], einen zweiten Parametersatz für einen anderen Motortyp anzuwählen. Die Umschaltung auf den 2. Parametersatz bei der Funktion [SET] kann, im Gegensatz zur Funktion [SP-SET], grundsätzlich nur im Stillstand (kein Startsignal) erfolgen. Die Funktionen [SET] und [SP-SET] können nicht gleichzeitig auf digitale Eingänge parametriert werden.

Parameter für den zweiten Motor haben die Bezeichnung x2xx. In der Parameterliste befinden sich diese Parameter direkt hinter den Parametern des ersten Parametersatzes. Die folgende Tabelle zeigt die Parameter die auch für den zweiten Parametersatz verwendet werden können.

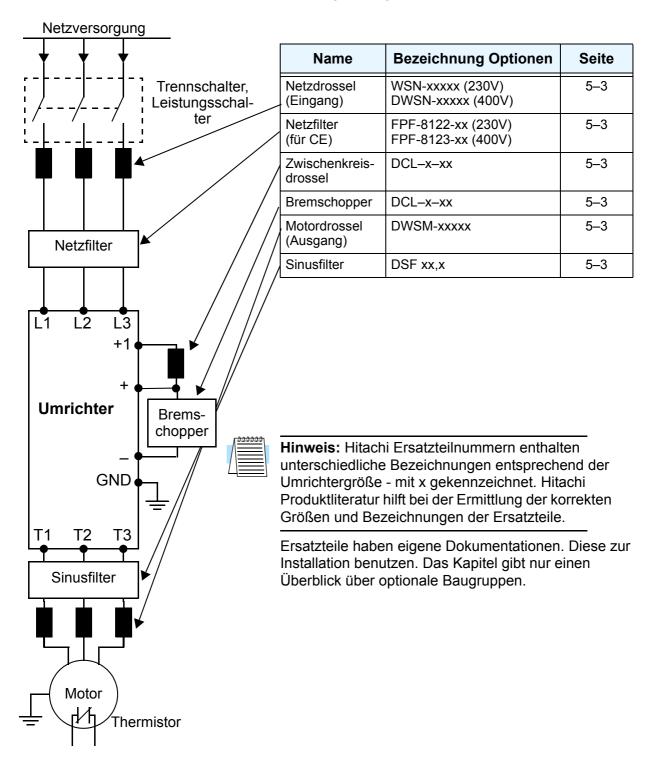
| Nome                                        | Para    | meter   |
|---------------------------------------------|---------|---------|
| Name                                        | Motor 1 | Motor 2 |
| Basisfrequenz                               | A020    | A220    |
| 1. Hochlaufzeit                             | F002    | F202    |
| 1. Runterlaufzeit                           | F003    | F203    |
| 2. Hochlaufzeit                             | A092    | A292    |
| 2. Runterlaufzeit                           | A093    | A293    |
| Umschaltung von 1. Rampe auf 2. Rampe       | A094    | A294    |
| Umschaltfrequenz Hochlaufzeit               | A095    | A295    |
| Umschaltfrequenz Runterlaufzeit             | A096    | A296    |
| Elektronischer Motorschutz / Einstellwert   | b012    | b212    |
| Elektronischer Motorschutz / Charakteristik | b013    | b213    |
| Boost-Charakteristik                        | A041    | A241    |
| Manueller Boost                             | A042    | A242    |
| Maximaler Boost bei %Eckfrequenz            | A043    | A243    |
| Arbeitsverfahren / U/f-Charakteristik       | A044    | A244    |
| Ausgangsspannung bei automatischem Boost    | A046    | A246    |
| Schlupfkompensation bei automatischem Boost | A047    | A247    |
| Motornennfrequenz / Eckfrequenz             | A003    | A203    |
| Maximalfrequenz                             | A004    | A204    |
| Maximale Betriebsfrequenz                   | A061    | A261    |
| Minimale Betriebsfrequenz                   | A062    | A262    |
| Motorleistung                               | H003    | H203    |
| Motorpolzahl                                | H004    | H204    |
| Frequenzsollwertvorgabe                     | A001    | A201    |
| Start/Stop-Vorgabe                          | A002    | A202    |
| Ausgangsspannung                            | A045    | A245    |

| Name                              | Parar   | neter   |
|-----------------------------------|---------|---------|
| Name                              | Motor 1 | Motor 2 |
| Stromgrenze / Charakteristik      | b021    | b221    |
| Stromgrenze / Einstellwert        | b022    | b222    |
| Stromgrenze / Zeitkonstante       | b023    | b223    |
| Anwahl Stromgrenze / Einstellwert | b028    | b228    |
| Digital-Eingang 1                 | C001    | C201    |
| Digital-Eingang 2                 | C002    | C202    |
| Digital-Eingang 3                 | C003    | C203    |
| Digital-Eingang 4                 | C004    | C204    |
| Digital-Eingang 5                 | C005    | C205    |
| Überlast-Alarm Schwelle (OL)      | C041    | C241    |

#### Umschaltung auf 2. Parametersatz bei Betrieb

Mit der Funktion [SP-SET] können die in der unteren Tabelle aufgeführten Parameter auch während des Betriebes verändert werden. Die Funktionen [SET] und [SP-SET] können nicht gleichzeitig auf digitale Eingänge parametriert werden.

Parameter für den zweiten Motor haben die Bezeichnung x2xx. In der Parameterliste befinden sich diese Parameter direkt hinter den Parametern des ersten Parametersatzes. Die folgende Tabelle zeigt die Parameter die auch für den zweiten Parametersatz verwendet werden können.


| Name                                  | Parameter |         |
|---------------------------------------|-----------|---------|
|                                       | Motor 1   | Motor 2 |
| Basisfrequenz                         | A020      | A220    |
| 1. Hochlaufzeit                       | F002      | F202    |
| 1. Runterlaufzeit                     | F003      | F203    |
| 2. Hochlaufzeit                       | A092      | A292    |
| 2. Runterlaufzeit                     | A093      | A293    |
| Umschaltung von 1. Rampe auf 2. Rampe | A094      | A294    |
| Umschaltfrequenz Hochlaufzeit         | A095      | A295    |
| Umschaltfrequenz Runterlaufzeit       | A096      | A296    |
| Manueller Boost                       | A042      | A242    |
| Maximaler Boost bei %Eckfrequenz      | A043      | A243    |
| Maximale Betriebsfrequenz             | A061      | A261    |
| Minimale Betriebsfrequenz             | A062      | A262    |

| In diesem Kapitel              | Seite |
|--------------------------------|-------|
| — Einleitung                   | 2     |
| — Beschreibung der Komponenten | 3     |
| Generatorisches Bremsen        | 4     |

# Zusatzteile Motorsteilerun

# **Einleitung**

Ein Antriebssystem besteht aus einem Motor und Umrichter, sowie für die elektrische Betriebssicherheit einem Trennschalter oder Sicherungen. Dies ist für einen Start im Prüffeld mit Motor und Umrichter ausreichend. Dieses Antriebssystem kann noch weitere verschiedene Komponenten enthalten. Einige dienen der Funkentstörung, andere steigern die Bremsfunktion des Umrichters. Die Zeichnung und Tabelle stellt alle Komponenten dar, die in der Anwendung benötigt werden.



# Beschreibung der Komponenten

# **Netzdrossel (Eingangsseitig)**

Reduzierung der niederfrequenten Netzrückwirkungen. Hitachi empfiehlt den Einsatz bei Netzspannungen >400V. Ausgleich von Netzunsymmetrien von mehr als 3% (bei Leistungen größer als 500 kVA) oder Netzschwankungen. Dadurch wird der Wirkungsgrad verbessert.

In folgenden Fällen kann eine Stromspitze in der Netzversorgung zu Beschädigungen an einem Umrichter führen:

- · Bei Unsymmetrien des Netzes von 3% oder höher
- Bei Netzteilleistungen die bis zu 10mal größer sind als die Umrichterleistung (Netzteilleistungen größer als 500 kVA)
- · Bei unerwartet starken Netzschwankungen

Beispiele für diese Zustände:

- **1.** Mehrere Umrichter sind parallel angeschlossen und benutzen die gleiche Stromversorgung
- 2. Ein Thyristorsteller und ein Frequenzumrichter sind parallel angeschlossen und benutzen die gleiche Stromversorgung
- 3. Ein installierter phasenvoreilender Kondensator schaltet (Blindstromkompensation) Bei diesen Bedingungen oder bei Geräten die sehr zuverlässig arbeiten müssen, MUSS eine eingangsseitige Netzdrossel (mit einem Potentialabfall in Höhe des Nennstroms) unter Berücksichtigung der Netzspannung auf der Netzversorgungsseite eingesetzt werden. Bei Auswirkungen eines Blitzeinschlages einen Blitzableiter einsetzen.

#### Beispielberechnung:

 $\begin{aligned} & V_{RS} = 205\text{V}, \ V_{ST} = 203\text{V}, \ V_{TR} = 197\text{V}, \\ & V_{RS} \ (\text{Spannung Phase R-S}), \ V_{ST} \ (\text{Spannung Phase S-T}), \ V_{TR} \ (\text{Spannung Phase T-R}) \\ & Unsymmetrie \ = \ \frac{\text{Max. Phasenspannung} - \text{Mittelwert Phasenspannung}}{\text{Mittelwert Phasenspannung}} \times 100 \end{aligned}$ 

$$= \frac{V_{RS} - (V_{RS} + V_{ST} + V_{TR})/3}{(V_{RS} + V_{ST} + V_{TR})/3} \times 100 = \frac{205 - 202}{202} \times 100 = 1,5\%$$

Zur Installation der Netzdrossel die mitgelieferte Dokumentation beachten.

# Motordrossel (Ausgangsseitig)

Motordrosseln kompensieren die durch die Koppelkapazität der Motorleitung zur Erde hervorgerufenen Pulsströme. Hitachi empfiehlt den Einsatz ab einer Leitungslänge von 10m. Außerdem reduzieren sie die Motorgeräusche.

#### **Funkentstörfilter**

Funkentstörfilter reduzieren die leitungsgebundenen Störungen.



**WARNUNG:** Der Funkentstörfilter hat einen hohen internen Ableitstrom zwischen Netzverdrahtung und Gehäuse. Den Schutzleiter des Funkentstörfilters vor der Netzverbindung anschließen, um Stromschläge oder Verletzungen zu vermeiden.

#### Zwischenkreisdrossel

Zwischenkreisdrosseln haben eine ähnliche Funktion wie Netzdrosseln: Reduzierung der niederfrequenten Netzrückführungen.

# **Generatorisches Bremsen**

# **Einleitung**

Zweck des generatorischen Bremsens ist die Verbesserung der Verzögerungsfähigkeiten des Umrichters beim Motor und dessen Last. Dies ist bei Anwendungen mit folgenden Charakteristiken notwendig:

- · Hohe Massenträgheitsmomente verglichen mit dem verfügbaren Motormoment
- · Häufig oder plötzlich auftretende Geschwindigkeitsänderungen
- Verluste des Systems sind nicht so groß, um den Motor entsprechend abzubremsen

Bei Abbremsen der Last durch Verringern der Ausgangsfrequenz wird der Motor kurzfristig zum Generator. Dies geschieht dann, wenn die Motordrehzahl größer als die Ausgangsfrequenz des Umrichters ist. Dies kann zu einer Erhöhung der Zwischenkreisspannung, mit einer resultierenden Störmeldung, führen. Bei vielen Anwendungen dient die Zwischenkreisüberspannung als Warnsignal für das Überschreiten der Bremsfähigkeit des Systems. An den Umrichter L200 kann ein externer Bremschopper angeschlossen werden, der die zurückgeführte Energie des Motors während des Bremsens an den optionalen Bremswiderstand abgibt. Der Bremswiderstand dient als hitzeentwickelnde Last um den Motor zu stoppen, ähnlich dem Bremsvorgang beim Automobil.

Schaltende Leistungstransistoren und ein Leistungswiderstand sind die Hauptbestandteile eines Bremschoppers. Weiterhin enthält er zur Sicherheit eine Sicherung und ein thermisch aktiviertes Störungsrelais. Vermeiden Sie Überhitzung des Bremswiderstandes. Die Sicherung und das Relais dienen als Absicherung für extreme Bedingungen, dabei bleiben jedoch die Bremseigenschaften des Umrichters erhalten.

#### **Generatorisches Bremsen**

Generatorisches Bremsen unterliegt, um Überhitzungen zu vermeiden, gewissen Richtlinien. Das rechts dargestellte Zeitdiagramm zeigt die Ausgangsfrequenz über einen bestimmten Zeitverlauf. Generatorisches Bremsen ist die Auswirkung während der Verzögerungsrampe und hat folgende Einschränkungen:

Ausgangsfrequenz

Generatorisches Bremsen

--T<sub>c</sub>

T<sub>c</sub>

- Der Arbeitszyklus beim generatorischen Bremsen beträgt
  - = 10%, wobei  $T_b/T_c \le 0.1 \text{ s}$

Generatorisches Bremsen hat eine maximale Einschaltzeit von  $T_b \leq 10 \ s.$ 

# Fehlersuche und Wartung

| In diesem Kapitel                                              | Seite |
|----------------------------------------------------------------|-------|
| — Fehlersuche                                                  | 2     |
| <ul> <li>Auslöseereignisse, Störspeicher, Bedingung</li> </ul> | gen.6 |
| — Wiederherstellen der Werkseinstellungen                      | 9     |
| — Wartung und Kontrolle                                        | 10    |

# **Fehlersuche**

## Sicherheits- und Warnhinweise

Vor Installation und Inbetriebnahme des Frequenzumrichters lesen Sie bitte dieses Produkthandbuch sorgfältig durch und beachten Sie alle Warn- und Sicherheitshinweise. Bewahren Sie dieses Produkthandbuch stets gut erreichbar in der Nähe des Frequenzumrichters auf.



**WARNUNG:** Die Geräte besitzen Zwischenkreiskondensatoren, die auch nach netzseitigem Ausschalten gefährlich hohe Spannungen führen. Warten Sie deshalb nach Abschalten der Netzspannung mindestens 10 Minuten bevor Sie das Gerät öffnen und daran arbeiten. Es ist darauf zu achten, dass keine spannungsführenden Teile berührt werden. Andernfalls besteht die Gefahr des elektrischen Stromschlages.



**WARNUNG:** Die Installation, Inbetriebnahme und Wartung dieser Antriebe darf nur von fachkundigem Personal, das mit der Funktionsweise der Ausrüstung sowie der gesamten Maschine vollständig vertraut ist, durchgeführt werden. Andernfalls besteht die Gefahr des elektrischen Stromschlages bzw. Personenschaden.



**WARNUNG:** Entfernen Sie keine Verbindungen durch Ziehen der Verbindungsleitung (Lüfterleitung, I/O-Board). Andernfalls besteht Brand- oder Verletzungsgefahr.

## Allgemeine Vorsichtsmaßnahmen und Anmerkungen

- · Achten Sie darauf, dass weder Staub noch Fremdkörper in das Gerät gelangen.
- · Achten Sie besonders auf beschädigte Leitungen und Verdrahtungsfehler.
- Achten Sie auf festen Sitz aller Klemmen und Verbindungen.
- Elektronisches Equipment von Feuchtigkeit und Öl fernhalten. Staub, Metallspäne und andere Fremdkörper können zu unerwarteten Unfällen bzw. Beschädigungen führen.

#### Kontrollabstände

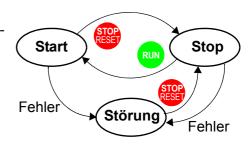
Folgendes Kapitel gibt eine Übersicht über Kontrollen bzw. Prüflisten die in bestimmten Abständen durchgeführt werden sollten:

- · Tägliche Sichtkontrolle
- · Ausführliche jährliche Kontrolle
- Isolationsprüfung

# Fehlersuche und deren Beseitigung

Die Tabelle zeigt Fehlereigenschaften und die entsprechenden Lösungen.

| Fel                  | hler                                                           | Fehlerursache                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lösung                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |                                                                | <ul> <li>Richtige Frequenzsollwertvorgabe unter Parameter A001?</li> <li>Richtiger Startbefehl unter Parameter A002?</li> </ul>                                                                                                                                                                                                                                                                                                                         | <ul> <li>Überprüfung der Parametereinstellung A001.</li> <li>Überprüfung der Parametereinstellung A002.</li> </ul>                                                                                                                                                                                                                                                                                       |
|                      |                                                                | Liegt an den Klemmen [L1], [L2]<br>und [L3/N] Netzspannung an?<br>Wenn ja, leuchtet die Power-<br>LED?                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Überprüfung der Anschlüsse [L1], [L2], [L3/N] und [U/T1], [V/T2], [W/T3].</li> <li>Einschalten der Netzspannung, Überprüfung der Sicherung.</li> </ul>                                                                                                                                                                                                                                          |
|                      | Keine                                                          | <ul> <li>Wird auf dem Display eine<br/>Störung (E X X) angezeigt?</li> </ul>                                                                                                                                                                                                                                                                                                                                                                            | Analyse der Ursache für<br>die Störung, Quittierung<br>mit der Taste RESET.                                                                                                                                                                                                                                                                                                                              |
| Motor läuft<br>nicht | Spannung an den Klemmen [U], [V] und [W]                       | <ul> <li>Sind die Steuerklemmen richtig angeschlossen?</li> <li>Steht ein Startbefehl an?</li> <li>Ist die Steuerklemme für Rechts- bzw. Linkslauf [FW]/ [RV] mit der Spannungsversorgung [PCS] verbunden?</li> <li>Ist bei Frequenzvorgabe unter F001 ein Wert &gt;0 eingegeben worden?</li> <li>Sind die Steuerklemmen [H], [O] und [L] richtig an das Potentiometer angeschlossen?</li> <li>Ist ein RESET-Signal oder Reglersperre aktiv?</li> </ul> | <ul> <li>Funktionsüberprüfung der Parameter C001-C005</li> <li>Startbefehl aktivieren</li> <li>Spannungsversorgung 24V an die konfigurierten Steuerklemmen [FW] oder [RV] anlegen</li> <li>Einstellung des Parameters F001 auf einen Wert &gt;0.</li> <li>Bei Frequenzvorgabe mit Potentiometer die Spannung an Klemme [O] messen.</li> <li>Deaktivierung der Signale RESET oder Reglersperre</li> </ul> |
|                      | Spannung an<br>den<br>Klemmen<br>[U], [V] und<br>[W]           | Blockierung bzw. Überlastung<br>des Motors?                                                                                                                                                                                                                                                                                                                                                                                                             | Überprüfung des Motors<br>und Belastung. Zu<br>Testzwecken den Motor<br>ohne Last fahren.                                                                                                                                                                                                                                                                                                                |
|                      | Verwendung<br>der optiona-<br>len Bedien-<br>einheit<br>(SRW). | Sind die Einstellungen zwischen<br>der optionalen und der Umrich-<br>terbedieneinheit richtig?                                                                                                                                                                                                                                                                                                                                                          | Überprüfung der<br>Einstellungen für die<br>Bedieneinheit                                                                                                                                                                                                                                                                                                                                                |


| Fehler                                                                               | Fehlerursache                                                                                                                                                                                                       | Lösung                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drehrichtung des Motors ist                                                          | <ul> <li>Sind die Klemmen [U/T1], [V/T2] und [W/T3] richtig angeschlossen?</li> <li>Sind die Klemmen [U/T1], [V/T2] und [W/T3] entsprechend der Drehrichtung angeschlossen?</li> </ul>                              | Anschluss entsprechend<br>der Drehrichtung des<br>Motors vornehmen:<br>Rechtslauf = U-V-W<br>Linkslauf = U-W-V.                                                                                                      |
| falsch                                                                               | <ul> <li>Sind die Steuerklemmen [FW]<br/>und [RV] richtig angeschlossen?</li> <li>Ist der Parameter F004 richtig<br/>eingestellt?</li> </ul>                                                                        | <ul> <li>Steuerklemme [FW] für<br/>Rechtslauf,<br/>Steuerklemme [RV] für<br/>Linkslauf.</li> <li>Einstellung der Drehrichtung mit F004.</li> </ul>                                                                   |
|                                                                                      | Liegt bei Verwendung der<br>Analog-Eingänge Spannung [O]<br>bzw. Strom [OI] an?                                                                                                                                     | <ul> <li>Verdrahtung überprüfen.</li> <li>Überprüfung des<br/>Potentiometers bzw.<br/>Sollwertgebers.</li> </ul>                                                                                                     |
| Motor erreicht nicht die<br>gewünschte Drehzahl                                      | Ist die Motorbelastung zu groß?                                                                                                                                                                                     | <ul> <li>Motorbelastung<br/>verringern.</li> <li>Überlastbegrenzungs-<br/>funktion verhindert bei<br/>Überlast ein Hochlauf auf<br/>den Sollwert.</li> </ul>                                                         |
|                                                                                      | Wird die Ausgangsfrequenz<br>durch den Umrichter begrenzt?                                                                                                                                                          | <ul> <li>Überprüfung der<br/>Maximalfrequenz (A004)</li> <li>Überprüfung der maximalen Betriebsfrequenz<br/>(A061)</li> </ul>                                                                                        |
| Motor läuft unrund                                                                   | <ul> <li>Sind die Lastschwankungen zu groß?</li> <li>Ist die Netzspannung nicht stabil?</li> <li>Sind Resonanzfrequenzen vorhanden?</li> </ul>                                                                      | <ul> <li>Frequenzumrichter und<br/>Motor mit größerer<br/>Leistung</li> <li>Stabile Netzspannung</li> <li>Änderung der Takt-<br/>frequenz oder Aus-<br/>blenden der Frequenzen<br/>durch Frequenzsprünge.</li> </ul> |
| Drehzahl des Antriebs<br>entspricht nicht der<br>eingestellten Ausgangsfre-<br>quenz | <ul> <li>Ist die Einstellung der Maximal-<br/>frequenz (A004) richtig?</li> <li>Wird unter d001 die richtige<br/>Frequenz angezeigt?</li> <li>Ist die Unter- bzw. Übersetzung<br/>des Getriebes richtig?</li> </ul> | <ul> <li>Überprüfung des Betriebsfrequenzbereichs.</li> <li>Überprüfung der Sollwertanpassung (A011 - A014).</li> <li>Überprüfung Unterbzw. Übersetzung des Getriebes</li> </ul>                                     |

| Fel                                                                     | nler                                 | Fehlerursache                                                                                                 | Lösung                                                                                                         |
|-------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Gespei- cherte Parameter stimmen nicht mit den                          | Kein erfolgter                       | Wurde vor Abspeichern der<br>Parameter die Netzversorgung<br>ausgeschaltet?                                   | Daten erneut ändern und<br>durch Drücken der<br>STR-Taste speichern.                                           |
|                                                                         | Download                             | War die Netz-Aus Zeit kleiner<br>als 6s?                                                                      | Abschaltung der<br>Netzspannung nach der<br>Parametrierung für<br>mindestens 6s.                               |
| eingegebe-<br>nen Werten<br>überein Download<br>wurde durch-<br>geführt |                                      | War die Netz-Aus Zeit mindes-<br>tens 6s nachdem das Display<br>ausgeschaltet wurde?                          | Erneutes Übertragen der<br>Daten und Spannung für<br>mindestens 6s nach<br>Übertragung eingeschaltet lassen.   |
| Keine<br>Parame-                                                        | Gültig für<br>bestimmte<br>Parameter | Ist der Umrichter im RUN-<br>Modus? Bestimmte Parameter<br>können in diesem Modus nicht<br>bearbeitet werden. | Umrichter in den<br>STOP-Modus versetzen.<br>Anschließend Parameter<br>bearbeiten.                             |
| teränderung<br>möglich                                                  | Gültig für alle<br>Parameter         | Wird der Eingang [SFT] (Para-<br>metersicherung) angesteuert?                                                 | Eingang mit der Funktion<br>[SFT] nicht ansteuern und<br>Parameter b031<br>(Parametersicherung)<br>überprüfen. |

# Auslöseereignisse, Störspeicher, Bedingungen

#### Fehlererkennung und -behebung

Der Prozessor im Umrichter erkennt eine Vielzahl von Fehlerbedingungen und speichert diese Ereignisse in einem Störspeicher. Das Abschalten des Umrichterausgangs ist mit dem eines Sicherungsschalters bei Überstrom zu vergleichen. Die meisten Fehler treten bei laufendem Motor auf (Diagramm rechts). Störungen können jedoch auch im Stop-Modus oder intern auftreten. In jedem Fall kann die Störung durch Drücken der



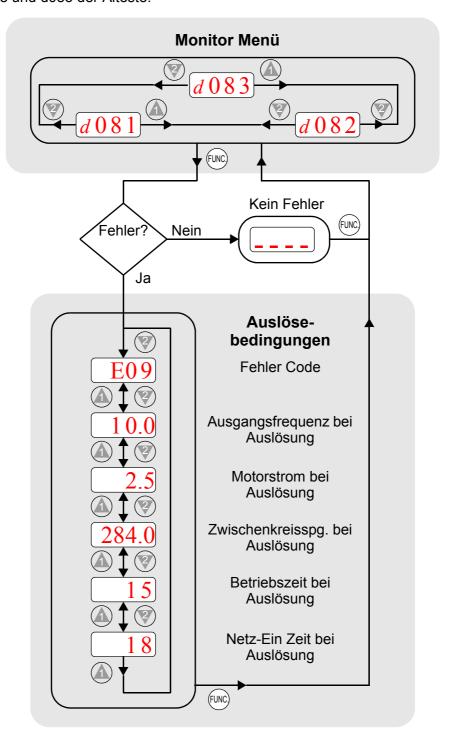
Taste Stop/Reset quittiert werden. Zusätzlich kann der Störspeicher, durch Ausführen der Vorgehensweise wie in Kapitel "Wiederherstellen der Werkseinstellungen" auf Seite 6–9 beschrieben, zurückgesetzt werden (Parameter b084=00 löscht den Störspeicher, die Umrichtereinstellungen bleiben unverändert).

## Störmeldungen

Eine Störmeldung wird automatisch auf dem Display angezeigt, sobald ein Fehler im Umrichter ausgelöst wurde. Die Tabelle beschreibt die Ursachen mit den dazugehörigen Fehlern.

| Fehler<br>Code | Beschreibung                                 | Wahrscheinliche Ursache(n)                                                                                                                                                          |
|----------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E01            | Überstrom bei konstanter Geschwindigkeit     | Kurzschluss am Umrichterausgang, Motor ist<br>blockiert oder überlastet. Dies führt jeweils zu                                                                                      |
| E02            | Überstrom bei Verzöge-<br>rung               | einem starken Stromanstieg der den Umrichter-<br>ausgang abschaltet                                                                                                                 |
| E03            | Überstrom bei<br>Beschleunigung              | Der Motor für Stern-Dreieck-Betrieb ist falsch angeschlossen                                                                                                                        |
| E04            | Überstrom bei anderen<br>Betriebsbedingungen |                                                                                                                                                                                     |
| E05            | Überlastschutz                               | Elektronischer Überlastschutz hat eine Motor-<br>überlastung festgestellt                                                                                                           |
| E07            | Überspannungsschutz                          | DC Zwischenkreisspannung hat, aufgrund rückwärtig eingespeister Energie, die Auslöseschwelle überschritten                                                                          |
| E08            | EEPROM Fehler                                | Internes EEPROM wird durch Störsignale, hoher Temperatur etc. beeinträchtigt                                                                                                        |
| E09            | Unterspannungsfehler                         | DC Zwischenkreisspannung ist so gering, dass<br>ein Fehler in der Steuerung aufgetreten ist.<br>Diese Bedingung kann zur Überhitzung oder<br>niedrigem Drehmoment des Motors führen |
| E11            | CPU Fehler                                   | Interner Fehler der CPU                                                                                                                                                             |
| E22            |                                              |                                                                                                                                                                                     |
| E12            | Externe Störung                              | Auslösen einer externen Störung                                                                                                                                                     |

| Fehler<br>Code | Beschreibung                                                    | Wahrscheinliche Ursache(n)                                                                                                                                                                                                                           |
|----------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E13            | Wiederanlaufsperre                                              | Bei Einschalten der Versorgungsspannung<br>wurde bei aktiver Wiederanlaufsperre (USP)<br>während des RUN-Befehls ein Fehler erzeugt.<br>Der Umrichter geht auf Störung und geht<br>solange nicht in den RUN-Modus, bis der Fehler<br>quittiert wurde |
| E14            | Erdungsfehler                                                   | Erdungsfehler zwischen Umrichterausgang und<br>Motor. Diese Funktion kann den Motor und den<br>Frequenzumrichter schützen. Er dient nicht zum<br>Personenschutz.                                                                                     |
| E15            | Eingangsüberspannung                                            | Eingangsspannung nach dem Einschalten für<br>100s höher als erlaubt. Bei Überspannung geht<br>der Umrichter in den Fehlerzustand. Nach<br>Quittieren der Störung kann der Umrichter erneut<br>gestartet werden.                                      |
| E2 1           | Übertemperatur<br>Umrichter                                     | Temperatur im Umrichter zu hoch. Der Thermo-<br>fühler im Umrichter erkennt eine zu hohe Tempe-<br>ratur der Leistungselektronik.                                                                                                                    |
| E22            | CPU-Fehler                                                      | Gerät defekt (irreparabel)                                                                                                                                                                                                                           |
| E23            | Gate-array Fehler                                               | Interner Fehler in der Kommunikation zwischen CPU und Gate-array IC                                                                                                                                                                                  |
| E30            | Treiberfehler                                                   | Interner Umrichterfehler zwischen CPU und Ansteuereinheit, begründet durch starke elektrische Störungen. IGBT-Modul wird vom Umrichter abgeschaltet.                                                                                                 |
| E35            | Thermistor                                                      | Bei Anschluss eines Thermistors an den<br>Klemmen [5] und [L] des Umrichters ist eine<br>Übertemperatur des Motors festgestellt worden                                                                                                               |
| E60            | Kommunikationsfehler                                            | Überwachungszeit des Umrichters für eine<br>Netzwerkverbindung ist abgelaufen                                                                                                                                                                        |
| E70            | Kommunikationsfehler (Options-Karte)                            | Überwachungszeit des Umrichters für eine Kommunikationsverbindung ist abgelaufen                                                                                                                                                                     |
|                | Unterspannung<br>(kurzzeitig) mit Abschal-<br>tung des Ausgangs | Abschaltung des Motorausgangs durch zu geringe Eingangsspannung. Fehlermeldung bei fehlgeschlagenem Neustart.                                                                                                                                        |




**HINWEIS:** Bei Auftreten eines EEPROM-Fehlers (E08), muss sichergestellt sein, dass die Parameterwerte richtig sind. Durch Abschalten der Netzversorgung während eines RESET-Signals an einem digitalen Eingang wird, bei Wiedereinschalten der Netzversorgung, ein EEPROM-Fehler auftreten.

## Störspeicher und Umrichterstatus

Vor Quittierung der Störung muss erst die Ursache herausgefunden werden. Die wichtigsten Daten werden im Umrichter abgespeichert. Anzeige mit den Monitorfunktionen (dxxx). Unter d081 weitere Details der augenblicklichen Störung ( $E_n$ ). Abspeicherung der vorherigen zwei Störungen unter d082 und d083. Sie werden von d081 in d082 und d082 in d083 geschoben. Neue Störungen werden dann unter d081 abgespeichert.

Das Diagramm zeigt die Struktur der Fehler-Codes. Bei aufgetretenen Fehlern ist d081 der Aktuellste und d083 der Älteste.



# Wiederherstellen der Werkseinstellungen

Es können alle Umrichterparameter in die Original-Werkseinstellungen des entsprechenden Landes zurückgesetzt werden. Nach Initialisierung des Umrichters wenden Sie den Einschalttest aus Kapitel 2 an, um den Motor wieder laufen zu lassen. Zur Initialisierung des Umrichters folgende Schritte beachten:

| Nr. | Vorgang                                                                                               | Anzeige                 | Funktion/Parameter                                                                      |
|-----|-------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------|
| 1   | FUNC), (a) und (2) um in die<br>Gruppe "b" zu kommen                                                  | <u>b</u>                | "b" Gruppe ausgewählt                                                                   |
| 2   | FUNC betätigen                                                                                        | <b>b</b> 0 0 1          | Erster "b" Gruppenparameter                                                             |
| 3   | betätigen und halten bis                                                                              | <b>b</b> 085            | Ländercode zur Initialisierung auswählen                                                |
| 4   | FUNC betätigen                                                                                        | 02                      | 00 = Japan, 01 = Europa,<br>02 = USA                                                    |
| 5   | Kontrolle des richtigen Ländercode absolute Sicherheit über den Einge entsprechenden Länderbereichs b | angsspannung<br>esteht. | sbereich und die Frequenz des                                                           |
|     | Änderung Ländercode 📤 oder 🤇                                                                          | Ø betätigen; z          | zum Speichern (STR) betätigen                                                           |
| 6   | FUNC betätigen                                                                                        | <b>b</b> 085            | Ländercode zur Initialisierung wurde ausgewählt                                         |
| 7   | y betätigen                                                                                           | <b>b</b> 084            | Initialisierungsfunktion wurde ausgewählt                                               |
| 8   | FUNC betätigen                                                                                        | 00                      | 00 = Initialisierung ausschalten, nur Störspeicher löschen                              |
| 9   | betätigen                                                                                             | 01                      | 01 = Initialisierung einschalten                                                        |
| 10  | (STR) betätigen                                                                                       | <b>b</b> 084            | Initialisierung zur Wieder-<br>herstellung der Werkseinstel-<br>lungen bereit           |
| 11  | FUNC), wund betätigen und halten (ca. 3s)                                                             | <b>b</b> 084            | Beginn der Initialisierung                                                              |
| 12  | Nach Blinken der Anzeige d000,<br>alle Tasten loslassen                                               | EU<br>US                | Während der Initialisierung<br>wird standardmäßiger<br>Parameterländercode<br>angezeigt |
| 13  | Initialisierung vollständig                                                                           | d 0 0 1                 | Parameter für Ausgangsfrequenz wird angezeigt                                           |



**HINWEIS:** Initialisierung kann nicht mit einer Fernbedienung durchgeführt werden. Unterbrechen Sie die Verbindung zur Fernbedienung und verwenden Sie die interne Bedieneinheit.

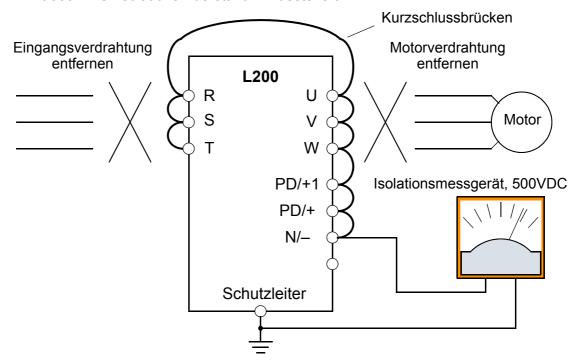
# Wartung und Kontrolle

# Monatliche und jährliche Kontrollliste

| Prüfpunkt      |                           | Prüfung                                                 | Kontro | llzyklus | Kontrollart                                                      | Abhilfe/Richtlinien                                                          |  |
|----------------|---------------------------|---------------------------------------------------------|--------|----------|------------------------------------------------------------------|------------------------------------------------------------------------------|--|
| Piu            | припкі                    | auf                                                     | Mon.   | Jahr     | Kontrollart                                                      | AdminorMondinien                                                             |  |
|                | Umgebung                  | Extreme<br>Temperatu-<br>ren &<br>Luftfeuch-<br>tigkeit | Ja     |          | Thermometer,<br>Hygrometer                                       | Umgebungstem-<br>peratur zwischen<br>-10 bis 40°C,<br>nicht kondensierend    |  |
| All-<br>gemein | Haupt-<br>einrichtungen   | Geräusche<br>& Schwin-<br>gungen                        | Ja     |          | Sicht- und<br>Hörkontrolle                                       | Verträgliche<br>Umgebung für elektr.<br>Steuerungen                          |  |
|                | Netz-<br>versorgung       | Spannungs-<br>abweichun-<br>gen                         | Ja     |          | Spannungs-<br>messung<br>zwischen<br>Klemmen [L1],<br>[L2], [L3] | Baureihe 200V:<br>200 - 240V 50/60Hz<br>Baureihe 400V:<br>380 - 480V 50/60Hz |  |
|                | Isolation                 | Ausrei-<br>chender<br>Widerstand                        |        | Ja       | Widerstands-<br>messgerät,<br>GND gegen<br>Klemmen               | mind. 5 M $\Omega$                                                           |  |
|                | Montage                   | Festen Sitz<br>aller<br>Schrauben                       |        | Ja       | Drehmomen-<br>tenschlüssel                                       | M3: 0,5 - 0,6 Nm<br>M4: 0,98 - 1,3 Nm<br>M5: 1,5 - 2,0 Nm                    |  |
|                | Bauteile                  | Über-<br>hitzung                                        |        | Ja       | Therm.<br>Auslösung                                              | Keine Auslösung                                                              |  |
|                | Gehäuse                   | Schmutz,<br>Staub                                       |        | Ja       | Sichtkontrolle                                                   | Beseitigung von<br>Staub und Schmutz                                         |  |
| Leistungs-     | Klemmleisten              | Sichere<br>Verbin-<br>dungen                            |        | Ja       | Sichtkontrolle                                                   | Keine Abweichungen                                                           |  |
| kreis          | Glättungs-<br>kondensator | Auslauf,<br>Deforma-<br>tion                            | Ja     |          | Sichtkontrolle                                                   | Keine Abweichungen                                                           |  |
|                | Relais                    | Kontakt-<br>prellen                                     |        | Ja       | Sichtkontrolle                                                   | Statisches<br>Ein-/Ausschalten                                               |  |
|                | Widerstände               | Risse /<br>Verfärbung                                   |        | Ja       | Sichtkontrolle                                                   | Überprüfung Wider-<br>standswert des<br>optionalen Brems-<br>widerstandes    |  |
|                | Lüfter                    | Geräusche                                               | Ja     |          | Ausschalten,<br>Drehen per<br>Hand                               | Leichtes Drehen                                                              |  |
|                |                           | Staub                                                   | Ja     |          | Sichtkontrolle                                                   | Staub entfernen                                                              |  |

| Prüfpunkt |                    | Prüfung                             | Kontrollzyklus |      | Kontrollart    | Abhilfe/Richtlinien                 |
|-----------|--------------------|-------------------------------------|----------------|------|----------------|-------------------------------------|
| 110       | припк              | auf                                 | Mon.           | Jahr | Romand         | Abilile/Richamien                   |
| Steuer-   | Allgemein          | Geruch,<br>Verfärbung,<br>Korrosion |                | Ja   | Sichtkontrolle | Keine Abweichungen                  |
| kreis     | Konden-<br>satoren | Auslaufen /<br>Deforma-<br>tion     | Ja             |      | Sichtkontrolle | Normales Aussehen                   |
| Display   | LEDs               | Lesbarkeit                          | Ja             |      | Sichtkontrolle | Intakte Funktion aller LED-Segmente |

**Hinweis 1:** Die Lebensdauer eines Kondensators ist von der Umgebungstemperatur abhängig. Sehen Sie auch "Lebensdauer Kondensator" auf Seite 6–13.


**Hinweis 2:** Der Umrichter muss regelmäßig gereinigt werden. Angesammelter Staub am Lüfter oder Kühlkörper kann zu Überhitzung des Umrichters führen.

## Isolationsprüfung

Das *Isolationsmessgerät* ist ein Teil einer Prüfausstattung, um mit einer hohen Spannung eine auftretende Isolationsminderung festzustellen. Bei Umrichtern ist es wichtig, dass die Leistungsklemmen von der Schutzleiterklemme isoliert sind.

Das Diagramm zeigt die Umrichterverdrahtung zur Durchführung der Isolationsprüfung. Folgen Sie den Anweisungen:

- 1. Nach Ausschalten der Umrichterspannung 10 Minuten warten.
- 2. Öffnen der Gehäuseabdeckung, um Zugang zur Verdrahtung zu bekommen.
- **3.** Entfernen aller Leitungen an den Klemmen [R, S, T, RB, PD/+1, PD/+, N/–, U, V und W]. Sehr wichtig ist auch die Entfernung der Eingangs- und Motorverdrahtung vom Umrichter.
- **4.** Verwendung von Kurzschlussbrücken, um die Klemmen [R, S, T, RB, PD/+1, PD/+, N/–, U, V und W] wie unten dargestellt kurzzuschließen.
- **5.** Anschluss des Isolationsmessgerätes, wie dargestellt, an den Schutzleiter und den kurzgeschlossenen Klemmen des Umrichters. Durchführung der Isolationsprüfung mit 500 VDC. Isolationswiderstand mindestens  $5M\Omega$ .



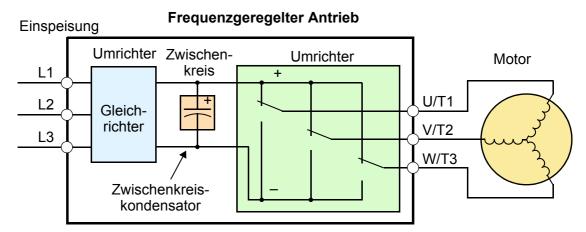
- **6.** Nach Abschluss der Prüfung Isolationsmessgerät vom Umrichter trennen.
- 7. Wiederherstellung der Originalverdrahtung an den Klemmen [R, S, T, RB, PD/+1, PD/+, N/-, U, V und W].



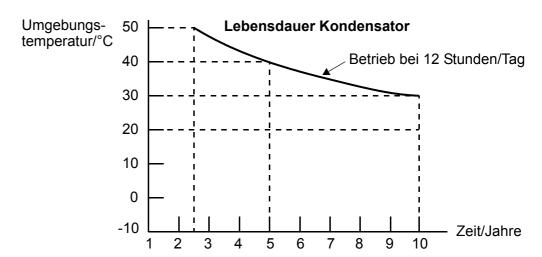
**ACHTUNG:** Kein Anschluss des Isolationsmessgerätes an Steuerklemmen für Digital-Eingänge, Analog-Eingänge etc.. Andernfalls kann der Umrichter beschädigt werden.



ACHTUNG: Niemals mit der Prüfspannung den Umrichter betreiben.


#### **Ersatzteile**

Zur Vermeidung von Geräteausfallzeiten sollten folgende Ersatzteile gelagert werden:


| Teilebeschreibung | Bezeichnung | Mer     | nge    | Bemerkung                                                                                                |  |
|-------------------|-------------|---------|--------|----------------------------------------------------------------------------------------------------------|--|
| renebeschiebung   | Dezeichnung | Benutzt | Ersatz | Demerkung                                                                                                |  |
| Lüfter            | FAN         | 1       | 1      | 015NF, 022NF, 030LF,<br>015HF - 075HF                                                                    |  |
| Gehäuse           | CV          | 1       | 1      | <ul><li>Vordere Abdeckung</li><li>Abdeckung Bedienung</li><li>Gehäuse</li><li>Untere Abdeckung</li></ul> |  |

#### Lebensdauer Kondensator

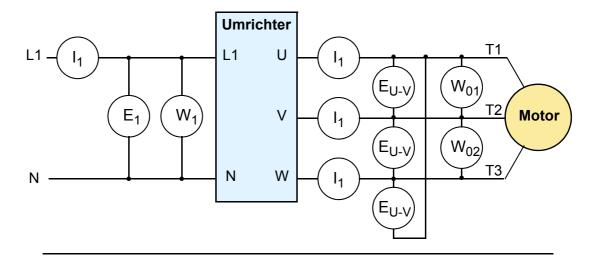
Der DC Zwischenkreis des Umrichters hat einen Zwischenkreiskondensator. Er verarbeitet hohe Spannungen/Ströme und glättet diese. Jede Kapazitätsverminderung beeinflusst die Leistungsmerkmale des Umrichters.



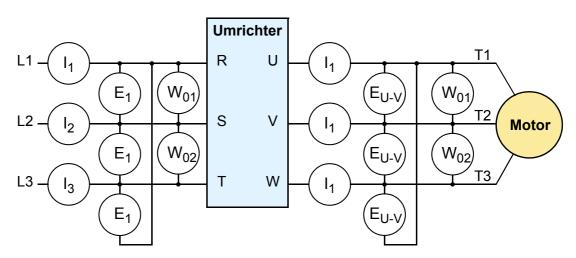
Die Lebensdauer von Kondensatoren verringert sich mit der Höhe der Umgebungstemperatur. Diese muss im zulässigen Bereich sein. Eine regelmäßige Wartung von Lüfter, Kühlkörper etc. muss durchgeführt werden. Bei Schaltschrankeinbau ist diese die Umgebungstemperatur.



# Elektrische Messpunkte/Messungen am Umrichter

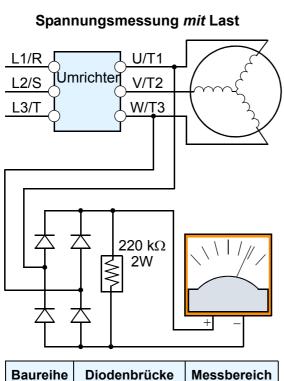

Die folgende Tabelle beschreibt die Durchführung von Messungen in einem Antriebssystem. Die Darstellung auf der nächsten Seite zeigt die Messpunkte.

| Messwert                                              | Spezieller Messwert                                                                         | Mess-<br>instrument                                                          | Bemerkung                           | Vergleichs-<br>werte                                                                                 |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------|
| Netzspannung<br>E <sub>1</sub>                        | $E_R$ – zwischen L1 und L2 $E_S$ – zwischen L2 und L3 $E_T$ – zwischen L3 und L1            | Dreheisen- instrument (Spannung) oder Drehspul- instrument mit Gleichrichter | Effektivwert<br>der Grund-<br>welle | Netzspannung:<br>(200V Baureihe)<br>200-240V,<br>50/60Hz;<br>(400V Baureihe)<br>380–480V,<br>50/60Hz |
| Versorgungsstrom I <sub>1</sub>                       | $I_r - L1$ , $I_s - L2$ , $I_t - L3$                                                        |                                                                              | Effektivwert                        | _                                                                                                    |
| Netzversorgung<br>W <sub>1</sub>                      | W <sub>11</sub> – zwischen L1 / L2<br>W <sub>12</sub> – zwischen L2 / L3                    |                                                                              | Effektivwert                        | _                                                                                                    |
| Leistungsfaktor<br>Pf <sub>1</sub><br>(Eingangsseite) | $Pf_1 = \frac{1}{\sqrt{3}}$                                                                 |                                                                              | _                                   |                                                                                                      |
| Ausgangs-<br>spannung<br>E <sub>0</sub>               | $E_U$ – zwischen U und V<br>$E_V$ – zwischen V und W<br>$E_W$ – zwischen W und U            | Drehspul-<br>instrument mit<br>Gleichrichter                                 | Effektivwert                        | _                                                                                                    |
| Ausgangsstrom<br>I <sub>o</sub>                       | I <sub>U</sub> – U<br>I <sub>V</sub> – V<br>I <sub>W</sub> – W                              | Dreheisen-<br>instrument<br>(Strom)                                          | Effektivwert                        | _                                                                                                    |
| Ausgangsleistung<br>W <sub>o</sub>                    | W <sub>01</sub> – zwischen U und V<br>W <sub>02</sub> – zwischen V und W                    | Elektronisches<br>Leistungs-<br>messgerät                                    | Effektivwert                        | _                                                                                                    |
| Leistungsfaktor<br>Pf <sub>o</sub><br>(Ausgangsseite) | Berechnung des Leistung nung E, Ausgangsstrom I ${\rm Pf}_0 = {\sqrt{3}}  , \label{eq:pf0}$ | _                                                                            |                                     |                                                                                                      |


- Hinweis 1: Verwendung von Messinstrumenten zur Messung von Effektivwerten der Grundwelle bei Spannungen und Messgeräte zur Messung von Effektivwerten bei Strom und Leistung.
- **Hinweis 2:** Die Umrichterausgangsspannung ist eine sinus bewertete PWM-Spannung. Messungen mit Standardmessgeräten können zu fehlerhaften Messergebnissen führen.
- **Hinweis 3:** Ein Universalmessgerät ist nicht für die Messung dieser Signalformen geeignet.

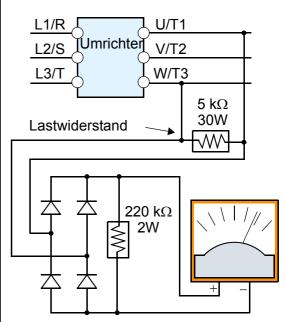
Die Zeichnungen zeigen die Messpunkte für Spannung, Strom und Leistung, die in der Tabelle auf der vorherigen Seite aufgelistet sind. Spannung wird als Effektivwert der Grundwelle gemessen und die Leistung als Effektivwert.

#### Messpunkte für einphasige Geräte




#### Messpunkte für dreiphasige Geräte




# Methode zur Messung der Umrichterausgangsspannung

Für Spannungsmessungen bei Antriebssystemen wird die richtige Ausstattung und Messmethode benötigt. Dabei treten hohe Spannungen und hochfrequente Signalformen, die keiner reinen Sinusform entsprechen, auf. Digitalmessgeräte liefern für diese Signalformen gewöhnlich keine zuverlässigen Messergebnisse. Der Anschluss von hohen Spannungen an ein Oszilloskop erweist sich, ohne den erforderlichen Messwandler, als riskant. Die Halbleiterbauteile des Umrichterausgangs haben Verluste und die Messungen ohne Last können falsche Ergebnisse hervorrufen. Darum wird dringend empfohlen, die folgenden Messungen in dargestellter Form mit der entsprechenden Ausstattung durchzuführen.

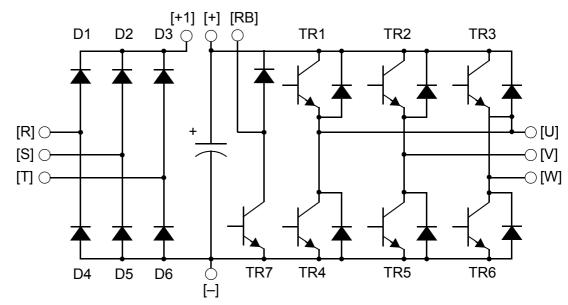


|          | 220 kΩ<br>2W     | + -         |
|----------|------------------|-------------|
| Baureihe | Diodenbrücke     | Messbereich |
| 200V     | 600V, 0,01A min. | 300V        |
| 400V     | 100V, 0,1A min.  | 600V        |

#### Spannungsmessung ohne Last



| Baureihe | Diodenbrücke     | Messbereich |
|----------|------------------|-------------|
| 200V     | 600V, 0,01A min. | 300V        |
| 400V     | 100V, 0,1A min.  | 600V        |




HOHE SPANNUNGEN: Keine Verdrahtung und Verbindungsklemmen bei Betrieb des Umrichters während der Messvorgänge berühren.

## **Prüfung IGBT**

Mit folgender Vorgehensweise können die IBGT's und Dioden geprüft werden:

- **1.** Entfernen aller Leistungsanschlüsse [R, S und T] und [U, V und W].
- 2. Entfernen der Verdrahtung an den Klemmen [+] und [RB].
- **3.** Verwendung eines Digitalmessgerätes mit einem Widerstandsmessbereich von  $1\Omega$ . Der Widerstandswert von Durchlass- und Sperrrichtung kann an den Klemmen [R, S, T, U, V, W, RB, + und –] überprüft werden.



**Tabellenlegende –** Widerstand unendlich:  $\cong \infty \Omega$  Widerstand null:  $\cong 0 \Omega$ 

| Bau- | Mess | gerät | Mess-                 | Bau- | Mess | gerät | Mess-                 | Bau- | Messgerät |      | Mess-                 |
|------|------|-------|-----------------------|------|------|-------|-----------------------|------|-----------|------|-----------------------|
| teil | +    | 1     | bereich               | teil | +    | ı     | bereich               | teil | +         | -    | bereich               |
| D1   | [R]  | +1    | $\cong 0 \Omega$      | D5   | [S]  | [–]   | $\cong \infty \Omega$ | TR4  | [U]       | [–]  | $\cong \infty \Omega$ |
|      | +1   | [R]   | $\cong \infty \Omega$ |      | [–]  | [S]   | $\cong$ 0 $\Omega$    |      | [-]       | [U]  | $\cong 0 \Omega$      |
| D2   | [S]  | +1    | ≅ 0 Ω                 | D6   | [T]  | [-]   | $\cong \infty \Omega$ | TR5  | [V]       | [-]  | $\cong \infty \Omega$ |
|      | +1   | [S]   | $\cong \infty \Omega$ |      | [-]  | [T]   | ≅0Ω                   |      | [-]       | [V]  | $\cong 0 \Omega$      |
| D3   | [T]  | +1    | ≅ <b>0</b> Ω          | TR1  | [U]  | [+]   | ≅0Ω                   | TR6  | [W]       | [-]  | $\cong \infty \Omega$ |
|      | +1   | [T]   | $\cong \infty \Omega$ |      | [+]  | [U]   | $\cong \infty \Omega$ |      | [-]       | [W]  | $\cong 0 \Omega$      |
| D4   | [R]  | [-]   | $\cong \infty \Omega$ | TR2  | [V]  | [+]   | ≅0Ω                   | TR7  | [RB]      | [+]  | ≅ 0 Ω                 |
|      | [-]  | [R]   | ≅ 0 Ω                 |      | [+]  | [V]   | $\cong \infty \Omega$ |      | [+]       | [RB] | $\cong \infty \Omega$ |
|      |      |       |                       | TR3  | [W]  | [+]   | ≅ 0 Ω                 |      | [RB]      | [-]  | $\cong \infty \Omega$ |
|      |      |       |                       |      | [+]  | [W]   | $\cong \infty \Omega$ |      | [-]       | [RB] | $\cong 0 \Omega$      |



**HINWEIS:** Die Widerstandswerte der Dioden/Transistoren in Durchlassrichtung werden unterschiedlich sein. Defektes Bauteil bei deutlichen Unterschieden.



**HINWEIS:** Bevor die Messung an den Klemmen [+] und [–] durchgeführt wird, vergewissern Sie sich, dass der Glättungskondensator vollständig entladen ist.

# Wörterbuch und Literaturverzeichnis



| In diesem Anhang     | Seite |
|----------------------|-------|
| — Wörterbuch         | 2     |
| Literaturverzeichnis | 8     |

# Wörterbuch

Umgebungstemperatur

Die Temperatur der Umgebung in der das Gerät eingebaut ist. Dabei sollen die vorhandenen Kühlbleche die erhöhte Verlustleis-

tung von der empfindlichen Elektronik ableiten.

Sollfrequenz

Die Frequenz mit der der angeschlossene Motor betrieben werden soll. Nach Start wird die Ausgangsfrequenz (Istfrequenz) mit der eingestellten Hochlauframpe auf die Sollfrequenz gefahren.

**Autotuning** 

Hitachi Umrichter benutzen das Autotuning zur Ermittlung der Motorparameter für eine optimale Motorausnutzung. Autotuning wird über die digitale Bedieneinheit ausgeführt. Siehe auch *Digitale Bedieneinheit* (Bei Geräten L200 nicht möglich).

Nennfrequenz

Die Eingangsfrequenz mit der ein AC Drehstrommotor betrieben wird. Die meisten Motoren arbeiten mit einer Frequenz von 50 - 60 Hz. Hitachi Umrichter haben eine programmierbare Nennfrequenz. Der Parameter (A003) muss mit dem angeschlossenen Motor übereinstimmen. Der Ausdruck *Nennfrequenz* läßt sich von der Taktfrequenz ableiten. Siehe auch *Taktfrequenz* und *Frequenzeinstellung*.

**Bremswiderstand** 

Ein Widerstand der die kinetische Energie einer abgebremsten Last in Wärme umwandelt. Die Massenträgheit ist der Grund dafür, warum der Motor während der Bremsphase wie ein Generator arbeitet. Siehe auch *Vierquadrantenbetrieb* und *Generatorisches Bremsen*.

Losbrechmoment

Das Moment eines Motors, welches aufgebracht werden muss, um die Last in Bewegung zu versetzen.

**Taktfrequenz** 

Ein konstant, periodisches Signal, das die Ausgangsspannung des Umrichters so anpaßt, das eine pulsierende Gleichspannung, in Form eines Wechselspannungssignals, für den Motor erzeugt wird. Siehe auch *PWM (Puls-Weiten-Modulation)*.

CE

Eine Regulierungsbehörde, die den Auftritt von elektronischen Produkten in Europa regelt. Antriebe müssen, um die CE-Anerkennung zu bekommen, mit besonderen Filtern ausgestattet sein.

Netzfilter

Eine Drosselspule die dafür ausgelegt ist bestimmte Frequenzen zu filtern. Frequenzen oberhalb eines bestimmten Grenzbereiches werden abgeschwächt. Um dieses zu erreichen wird oftmals ein Ferritkern benutzt. In frequenzgeregelten Antriebssystemen kann ein Netzfilter Netzrückwirkungen dämpfen und Anlagenteile schützen. Siehe auch *Netzrückwirkungen*.

Gleichstrombremse

Die Funktion der Gleichstrombremse taktet eine Gleichspannung auf die Motorwicklungen um diesen abzubremsen. Auch "DC injection braking" genannt, hat bei hohen Geschwindigkeiten geringe Auswirkungen. Es dient zur Verbesserung.

**Totbereich** 

Der Bereich in einem Regelsystem bei dem die Eingangsänderung keine Änderung des Ausgangs zur Folge hat. Die SOLL-IST-Differenz bei PID-Reglern hat häufig einen Totbereich. Ob ein Totbereich wünschenswert ist oder nicht, hängt von der Applikation ab.



#### **Digitale Bedien**einheit

Bei Hitachi Umrichtern der Serie L200 ist mit der "digitalen Bedieneinheit" die Bedientastatur auf der Frontseite gemeint. Sie ist abnehmbar (nicht bei L200) und über ein Verbindungskabel an den Umrichter anzuschliessen. Weiterhin kann der Umrichter über eine PC-Simulationssoftware bedient werden.

#### Diode

Ein Halbleiterbauelement, welches eine Spannungs-Strom-Charakteristik besitzt. Der Strom fließt dabei nur in Durchflussrichtung, wobei der Ableitstrom in Sperrrichtung vernachlässigbar ist. Siehe auch Gleichrichter.

#### Einschaltdauer

- 1. Anteil der Rechteckspannung einer Festfrequenz den man als "eingeschaltet" (high) im Vergleich zu "ausgeschaltet" (low) bezeichnet.
- 2. Anteil der Laufzeit eines Motors, Bremswiderstands etc.. Dieser Parameter wird üblicherweise in Verbindung mit dem erlaubten Wärmeanstieg des Gerätes vorgegeben. Zeitbasis: 100/120s

#### **SOLL-IST-Differenz**

In einer Prozess-Steuerung wird die SOLL-IST-Differenz zwischen dem gewünschten Sollwert und dem aktuellen Istwert einer Prozessvariablen so bezeichnet. Siehe auch Prozessvariable und PID-Realer.

# **EMI (Elektro**magnetische Störungen)

Beim Schalten von hohen Strömen bzw. Spannungen in Antriebssystemen, können elektrische Signale abgestrahlt werden, welche in der näheren Umgebung die Funktion von empfindlichen Instrumenten oder Geräten beeinflussen kann. Bestimmte Gesichtspunkte bei der Installation, wie lange Motorkabel, führen zu einem vermehrten Auftreten von elektromagnetischen Störungen. Hitachi bietet Filter an, welche die Höhe der elektromagnetischen Störungen verringern.

#### Vierquadrantenbetrieb

Bezugnehmend auf die Momentenkennlinie, kann ein Vierguadrantenantrieb den Motor entweder vorwärts oder rückwärts drehen bzw. abbremsen lassen (siehe auch Gegenmoment). Eine Last mit einer großen Trägheit, welche schnell in beide Richtungen bewegt werden muss, benötigt einen Vierquadrantenbetrieb.

#### Freies Auslaufen

Eine Möglichkeit durch einfaches Ausschalten der Motorspannung den Motor zu stoppen. Dies ermöglicht dem Motor und seiner Last frei auszulaufen, oder durch eine mechanische Bremse die Auslaufzeit zu verkürzen.

Frequenzeinstellung Während Frequenzen eine verbreitete Bedeutung in der allg. Elektronik haben, ist mitlerweile auch die Regelung der Motorgeschwindigkeit ein weitverbreitetes Anwendungsgebiet. Dies liegt an der variablen Ausgangsfrequenz des Umrichters. Diese ist proportional zur erreichenden Motorgeschwindigkeit. Zum Beispiel, ein Motor mit einer Nennfrequenz von 50Hz kann mit einem Umrichter zwischen 0 bis 50Hz geregelt werden. Siehe auch Nennfrequenz, Taktfrequenz und Schlupf.

# Netzrückwirkung

Die Ausgangsbasis der Netzrückwirkungen beruhen auf der Grundfrequenz des Umrichters, welche um ein vielfaches multipliziert werden. Die Rechtecksignale in Umrichtern erzeugen Netzrückwirkungen. Diese Rückwirkungen können für die Elektronik (einschließlich der Motorwindungen) harmlos sein, können jedoch auch der Grund für Störungen sein. Drosselspulen,

Netzdrosseln und Netzfilter werden verwendet, um Netzrückwir-

kungen zu dämpfen. Siehe auch Netzfilter.

Leistung Eine gemessene physikalische Größe die das Ergebnis aus Arbeit

pro Zeiteinheit ergibt.

**IGBT** Insulated Gate Bipolar Transistor (IGBT) - Ein Halbleiterbauele-

> ment welches dafür geeignet ist in Durchflussrichtung große Ströme zu leiten und in Sperrichtung hohe Spannungen auszuhalten. Diese Hochleistungstransistoren werden in Hitachi Umrichtern

eingesetzt.

**Beharrungsmoment** Der natürliche Widerstand eines Gegenstands, um ihn durch eine

externe Kraft in Bewegung zu setzen. Siehe auch Motorlast.

Steuerklemmen Logische konfigurierbare Eingangs- oder Ausgangsfunktionen.

Jeder Klemme können verschiedene Funktionen zugeordnet

werden.

**Umrichter** Ein Gerät, das elektronisch Gleich- in Wechselstrom durch einen

> wechselnden Schaltprozess umwandelt. Ein Regelgerät, wie der Hitachi L200, wird als Umrichter bezeichnet, weil er durch Umrichterkreise ein 3-phasiges Ausgangssignal für den Motor erzeugt.

**Trenntransformator** Ein Transformator um eine galvanische (elektrische) Trennung

zwischen der Primär- und Sekundärwicklung herzustellen.

**Tipp-Betrieb** Üblicherweise als Handbetrieb bezeichnet. Ein Tipp-Befehl von

> einer Bedieneinheit aus, läßt den Motor/Antrieb so lange in die gewünschte Richtung drehen, bis das Signal wieder weggeschaltet

wird. Die Zeitrampen sind dabei nicht aktiv.

Frequenzsprung Ein Frequenzsprung ist ein spezieller Punkt des Frequenzaus-

> gangsbereichs, der übersprungen werden soll. Diese Anwendung wird benötigt, um Resonanzfrequenzen auszublenden. Es können

bis zu 3 Frequenzsprünge programmiert werden.

**Netzdrossel** Eine 3-phasige Drosselspule die hauptsächlich im Eingangskreis

des Umrichters installiert wird. Sie dient dazu, Netzrückführungen

zu minimieren und den Kurzschlußstrom zu begrenzen.

Bewegungsenergie Die physikalische Eigenschaft eines sich in Bewegung befindlichen

> Gegenstandes, diesen Zustand beizubehalten. Im Fall eines Motors haben der drehende Rotor und die anhängende Last rotie-

rende Bewegungsenergie.

Festfrequenzen Die Möglichkeit bei einem Antriebssystem einzeln voreingestellte

> Geschwindigkeiten abzuspeichern. Die Motorgeschwindigkeit wird gemäß den ausgewählten Geschwindigkeitsvoreinstellungen angesteuert. Hitachi Umrichter haben 16 einstellbare Festfrequen-

zen.

In Bezug auf Antriebsmotoren besteht die Motorlast aus dem

Beharrungsmoment der physikalischen Masse, die durch den Motor bewegt wird, und der dazugehörigen mechanischen

Reibung. Siehe auch Beharrungsmoment.

Der "National Electric Code" ist ein behördliches Dokument, dass

die elektrische Leistung, Anlagenverdrahtung und Installation in

den USA regelt.

**Motorlast** 

**NEC** 

#### **NEMA**

"National Electric Manufacturer's Association" (Nationale Vereinigung der Elektrohersteller). NEMA-Richtlinien veröffentlichen eine Bewertung der Geräteserien. Die Industrie braucht dies, um die Gerätefunktionen beurteilen oder vergleichen zu können, um die verschiedenen Hersteller einem bekannten Standard anzupassen.

## "Open-collector"-Ausgänge

Eine Art von Logikausgängen, unter Verwendung eines NPN-Transistors, der als Schalter zwischen der gemeinsamen Spannungsversorgung, normalerweise Masse, verwendet wird. Der Transistoranschluss *Collector* ist für eine externe Verbindung *offen* (nicht intern verbunden). Durch eine externe Last fließt Strom gegen Masse.

## Leistungsfaktor

Eine Kennung dafür, um die Phasenverschiebung (Zeitverschiebung) zwischen Strom und Spannung bei einer Stromquelle und der elektrischen Last auszudrücken. Ein idealer Leistungsfaktor entspricht dem Wert 1,0 (keine Phasenverschiebung). Leistungsfaktoren kleiner als 1 werden dadurch hervorgerufen, dass Energie in der Verkabelung verloren geht (Quelle zu Last).

#### **PID-Regler**

Proportional-Integral-Differential - Ein mathematisches Modell für Prozesssteuerungen. Eine Prozesssteuerung beinhaltet, unter Verwendung der PID-Algorithmen, einen Istwert (IW) und einen Sollwert (SW). Dieser soll dynamische Bedingungen ausgleichen, um den Ausgang der Prozessvariablen so zu beeinflussen, dass der gewünschte Wert erreicht wird. Bei frequenzgeregelten Antrieben ist die Motorgeschwindigkeit der Istwert. Siehe auch SOLL-IST-Differenz.

#### **Prozessvariable**

Eine physikalische Eigenschaft des Prozesses die sehr interessant ist, weil sie die Qualität der zu Grunde liegenden Anwendung beeinflusst. Für einen Industrieofen ist die Temperatur die Prozessvariable. Wird im Allgemeinen als Istwert bezeichnet. Siehe auch *PID-Regler* und *SOLL-IST-Differenz*.

#### **PWM**

Puls-Weiten-Modulation: Eine Wechselspannungsart (Getaktete Gleichspannung) bei frequenzgeregelten Antrieben, welche die Frequenz- und Spannungsbedingungen am Ausgang des Umrichters für den Antrieb erfüllen.

#### Blindwiderstand

Der Scheinwiderstand von Drosselspulen und Kondensatoren hat zwei Bestandteile. Der konstante ohmsche Widerstand und der Blindwiderstand der sich mit der Frequenz ändert. Die Geräte haben einen komplexen Scheinwiderstand (komplexe Zahl), wobei der ohmsche Widerstand der Realteil und der Blindwiderstand der Imaginärteil ist.

#### Gleichrichter

Ein elektronisches Bauteil, bestehend aus einer oder mehreren Dioden, welches Wechsel- in Gleichspannung umwandelt. Gleichrichter werden üblich in Kombination mit Kondensatoren verwendet, um die gleichgerichtete Spannung in eine annähernd reine Gleichspannung zu glätten.

# Generatorisches Bremsen

Die Drehfeldfrequenz des Läufers ist größer als die entsprechende Ausgangsfrequenz des Umrichters. Tritt bei Hubantrieben im Senkbetrieb oder beim Abbremsen von großen Massenträgheitsmomenten auf.

**Regelung** Die Regelqualität ist anwendungsbezogen und versucht den zu

regelnden Wert zum gewünschten Wert aufrechtzuerhalten. Üblicherweise wird der Wert in Prozent angegeben, bei Motorrege-

lungen bezieht sich dieser Wert auf die Wellendrehzahl.

**Gegenmoment** Das Moment, welches in Gegenrichtung zur Motorwellendrehung

ansteht und vom Drehmoment des Motors überwunden werden

muss.

**Rotor** Der sich drehende Teil des Motors. Er ist mit der Motorwelle

verbunden. Siehe auch Stator.

Sättigungsspannung Bei einem Halbleitertransistor ist Sättigung erreicht, wenn der

Eingangsstrom einen Ausgangsstrom zur Folge hat. Die Sättigungsspannung ist der Spannungsabfall am Transistor. Die ideale

Sättigungsspannung ist 0V.

Sensorless Vector Control

Ein technisches Verfahren, um bei frequenzgeregelten Antrieben einen Vektorbetrieb im Motor, ohne Verwendung eines Lagegebers, hervorzurufen. Bei Drehmomentensteigerung im unteren Drehzahlbereich kann so, aus Kostengründen, auf den Lagegeber

verzichtet werden.

**Sollwert (SW)** Der *Sollwert* ist der eingestellte Wert einer Prozessvariablen. Siehe

auch Prozessvariable (PV) und PID-Regler.

**Wechselstromnetz** Eine Wechselspannungsversorgung bestehend aus einer Phase

und einem Null-Leiter. Eine Schutzleiterverbindung vervollständigt dies. Theoretisch besteht kein Spannungsunterschied zwischen Null-Leiter und Schutzleiter, während die Phase einen sinusförmigen Spannungsverlauf zum Null-Leiter hat. Diese Spannungsversorgung wird als einphasig bezeichnet, im Unterschied zur

dreiphasigen Spannungsversorgung. Einige Baureihen von Hitachi Umrichtern haben eine einphasige Spannungsversorgung, die Ausgangsspannung ist jedoch generell dreiphasig. Siehe auch

Drehstromnetz.

**Schlupf** Bei Asynchronmotoren ist dies der Unterschied zwischen der

theoretischen Drehzahl eines Motors ohne Last (je nach

Ausgangskennlinie) und der aktuellen Drehzahl. Zur Erzeugung von Drehmoment ist Schlupf zwingend notwendig. Zuviel Schlupf führt jedoch dazu, das die Temperatur in den Wicklungen stark

ansteigt und der Motor sogar "kippt".

Kurzschlußläufer

Eine "Bezeichnung" für die Ausführung des Rotors bei Drehstrom-

motoren.

Stator

Die Wicklungen eines Motors die fest im Motor sind. Sie sind mit

dem Motoranschluss verbunden. Siehe auch Rotor.

**Tachometer** 

1. Ein auf der Motorwelle befestigter Signalgeber, der die Drehzahl

als Analogsignal an das Drehzahlregelgerät weitergibt.

2. Ein Drehzahlmessgerät, dass die Drehzahl an der Motorwelle

optisch erfasst und anzeigt.

**Thermokontakt** 

Eine elektromechanische Schutzeinrichtung die einen Kontakt öffnet, wenn ein bestimmter Temperaturgrenzwert erreicht wird. Wärmeschutzschalter werden benötigt, um die Motorwicklungen vor Hitzeschäden zu schützen. Der Umrichter kann, durch verar-

beiten dieses Signals, den Motor bei Überhitzung abschalten. Siehe auch *Fehlerfall*.

#### **Thermistor**

Ein Temperaturfühler, der seinen Widerstand entsprechend der Temperatur ändert. Der Schaltbereich von Thermistoren und dessen Robustheit sind ideal für die Motortemperaturüberwachung. Hitachi Umrichter haben eine eingebaute Thermistorüberwachung, welcher die Motorübertemperatur erfaßt und den Umrichterausgang abschaltet.

#### **Drehstromnetz**

Ein Wechselspannungsnetz mit 3 Phasen und einer Phasenverschiebung von 120° wird als Drehstromnetz bezeichnet. Ein Null-Leiter und ein Schutzleiter vervollständigen dies. Elektrische Lasten müssen im "Dreieck" oder "Stern" angeschlossen werden. Eine im "Stern" angeschlossene Last, wie ein Asynchronmotor, ist eine symmetrische Last. Der Strom in allen 3 Phasen ist gleich. Folglich ist der Strom im Null-Leiter theoretisch null. Dies ist der Grund dafür das 3-phasige Geräte generell keinen Null-Leiter haben. Dennoch ist eine Schutzleiterverbindung aus Sicherheitsgründen sehr wichtig und vorgeschrieben.

#### **Drehmoment**

Eine Rotationskraft, die von der Motorwelle ausgeübt wird. Die Maßeinheit besteht aus dem Abstand (Radius des Achsabstandes) und der Kraft bezogen auf den Achsabstand. Werte werden häufig in pound-feet, ounce-inches oder Newtonmeter (Nm) angegeben.

#### **Transistor**

Ein dreipoliges Bauteil das als Signalverstärker dient und zum Schalten und Regeln verwendet wird. Transistoren haben einen linearen Arbeitsbereich, deshalb werden sie bei Umrichtern als Hochleistungsschalter verwendet. Neueste Entwicklungen im Leistungshalbleiterbereich haben Transistoren hergestellt, die in der Lage sind, hohe Spannungen und Ströme, mit einer hohen Ausfallsicherheit, zu verarbeiten. Die Sättigungsspannung nimmt, in Folge der geringen Wärmeableitung, erwiesenermaßen ab. Hitachi Umrichter verwenden modernste Halbleiter, um einen hohen Leistungsstand und eine hohe Ausfallsicherheit zu gewährleisten. Siehe auch *IGBT* und *Sättigungsspannung*.

#### **Fehlerfall**

Ein Ereignis, dass den Umrichter veranlaßt den Betrieb zu stoppen, nennt man "Fehlerfall" (wie das *Auslösen* einer Sicherung). Der Umrichter zeichnet diesen Vorgang in seinem Störspeicher auf. Dies erfordert immer eine Fehlerquittierung.

#### Verlustleistung

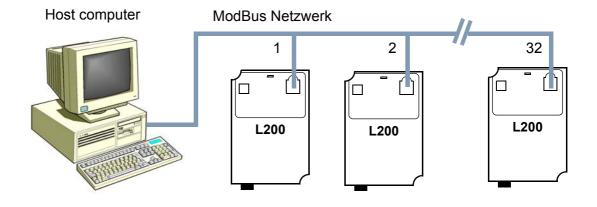
Ein Maß für den internen Leistungsverlust eines Bauelementes. Der Leistungsverlust ist der Unterschied zwischen der aufgenommenen und der abgegebenen Leistung. Die Verlustleistung eines Umrichters ist die Eingangsleistung abzüglich der abgegebenen Leistung an den Motor. Die Verlustleistung ist normalerweise am größten, wenn der Umrichter seine maximale Ausgangsleistung abgibt. Daher ist sie üblicherweise für einen bestimmten Ausgangsbereich vorgesehen. Die Anforderungen bezüglich der Umrichterverlustleistung sind wichtig für die Auswahl der Gehäuse.

# Literaturverzeichnis

| Titel                                      | Autor und Verlag                                                                           |
|--------------------------------------------|--------------------------------------------------------------------------------------------|
| Variable Speed Drive Fundamentals, 2nd Ed. | Phipps, Clarence A. The Fairmont Press, Inc. / Prentice-Hall, Inc. 1997 ISBN 0-13-636390-3 |
| Electronic Variable Speed Drives           | Brumbach, Michael E.<br>Delmar Publishers 1997<br>ISBN 0-8273-6937-9                       |
| Hitachi Inverter Technical Guide Book      | Published by Hitachi, Ltd. Japan 1995<br>Publication SIG-E002                              |

# ModBus Netzwerk Kommunikation

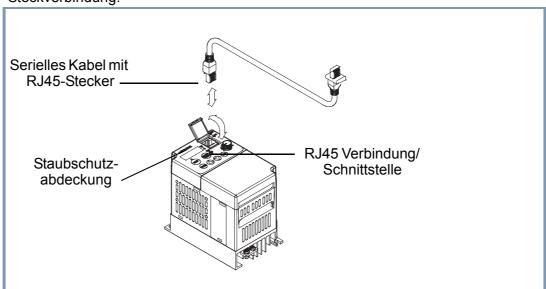



| In diesem Anhang                                         | Seite |
|----------------------------------------------------------|-------|
| — Einleitung                                             | 2     |
| <ul> <li>Verbindung des Umrichters mit dem Mo</li> </ul> | dBus3 |
| — Datenübertragungsprotokoll                             | 6     |
| — ModBus Datenliste                                      | 20    |

# **Einleitung**

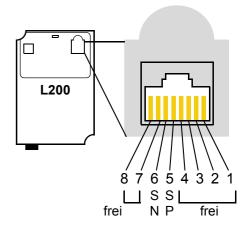
Umrichter der Serie L200 haben eine eingebaute RS-485 Schnittstelle, mit der Charakteristik des ModBus Protokoll RTU. Die Umrichter können ohne besondere Prozessperipherie direkt an ein vorhandenes Betriebsnetzwerk oder an rechnerübergreifende Anwendungen angeschlossen werden. Die Anforderungen für die serielle Kommunikation des L200 sind in der Tabelle beschrieben.

| Begriff                     | Anforderung                                                               | Benutzerauswahl      |
|-----------------------------|---------------------------------------------------------------------------|----------------------|
| Übertragungsgeschwindigkeit | 4800 / 9600 / 19200 bps                                                   | Ja                   |
| Übertragungsmodus           | Asynchron                                                                 | Nein                 |
| Zeichencode                 | Binär                                                                     | Nein                 |
| LSB Aufstellung             | Übertragung LSB zuerst                                                    | Nein                 |
| Schnittstelle               | RS-485 Senden/Empfangen                                                   | Nein                 |
| Datenbits                   | 8-bit (ModBus RTU Betriebsart)                                            | (ASCII n. verfügbar) |
| Parität                     | None / even / odd                                                         | Ja                   |
| Stop bits                   | 1 oder 2 bits                                                             | Ja                   |
| Anlaufbedingung             | Start von einem übergeordneten<br>Gerät                                   | Nein                 |
| Reaktionswartezeit          | 0 bis 1000 msec.                                                          | Ja                   |
| Adressierung                | Adressierung von 1 bis 32                                                 | Ja                   |
| Steckverbindung             | RJ45- Buchse                                                              | _                    |
| Fehlerüberwachung           | Überlauf, Blocksatzüberwa-<br>chung, CRC-16 oder horizon-<br>tale Parität |                      |

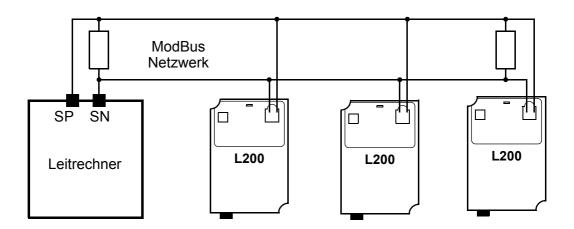

Der unten dargestellte Netzwerkaufbau zeigt den Anschluss von mehreren Umrichtern an ein übergeordnetes System. Jedem Umrichter muss im Netzwerk seine eigene Adresse (1 bis 32) zugewiesen werden. In einer typischen Anwendung ist das übergeordnete System der Master und der Umrichter der Slave.



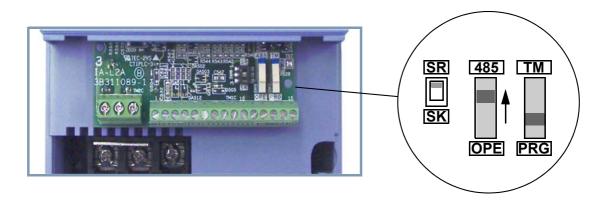
# Verbindung des Umrichters mit dem ModBus


Folgen Sie den Anweisungen in diesem Kapitel um den Umrichter mit dem ModBus zu verbinden

- **1. Abdeckung serielle Schnittstelle -** Die Umrichtertastatur hat, zum Schutz der seriellen Schnittstelle, eine klappbare Staubschutzabdeckung.
- 2. Verbindung serielle Schnittstelle Nach Wegklappen der Abdeckung beachten Sie die dahinterliegende RJ45 Verbindung. Verbinden Sie das serielle Kabel mit der Steckverbindung.




3. Anschlußbelegung - Der Umrichteranschluß benutzt zum Senden/Empfangen eine RS-485 Schnittstelle. Die Anschlußbelegung ist rechts und in der unteren Tabelle dargestellt.


| Pin | Symbol | Beschreibung         |
|-----|--------|----------------------|
| 1   | _      | Nicht verwendet      |
| 2   | _      | Nicht verwendet      |
| 3   | _      | Nicht verwendet      |
| 4   | _      | Nicht verwendet      |
| 5   | SP     | Send/Receive Positiv |
| 6   | SN     | Send/Receive Negativ |
| 7   | _      | Nicht verwendet      |
| 8   | _      | Nicht verwendet      |



4. Netzwerkabschluß - Die RS-485 Verdrahtung muss an jedem Ende, um elektrische Reflektionen auszublenden und Übertragungsfehler zu reduzieren, mit einem Widerstand abgeschlossen werden. Der L200 Kommunikationsanschluß beinhaltet keinen Abschlußwiderstand. Deshalb wird ein Abschluß benötigt, wenn der Umrichter am Ende einer Netzwerkverdrahtung liegt. Es sollten Abschlußwiderstände verwendet werden, die der charakteristischen Impedanz des Netzwerkkabels entsprechen. Die Zeichnung zeigt ein Netzwerk mit den entsprechenden Abschlußwiderständen.



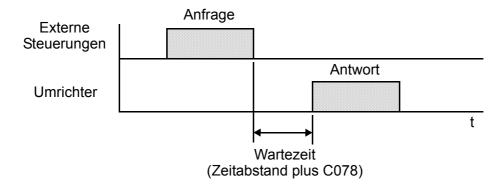
5. Schalter OPE/485 - Der serielle Anschluß ermöglicht entweder eine Verbindung zur Bedientastatur oder zum Netzwerk. Ein DIP-Switch muß für die ModBus Kommunikation eingestellt werden. Zur Einstellung des Schalters muss der vordere Gehäusedeckel entfernt werden. Bevor das Gehäuse entfernt wird bzw. der Schalter umgeschaltet wird, muss der Umrichter ausgeschaltet werden. Genauere Anweisungen sehen Sie auch im Kapitel "Vordere Gehäuseabdeckung" auf Seite 2–3. Der OPE/485 DIP-Switch befindet sich an der unten dargestellten Stelle. Den Schalter in die obere Stellung, mit der Bezeichnung "485", schieben. Danach den vorderen Gehäusedeckel wieder einsetzen.



An dieser Stelle ist die Netzwerkverbindung vollständig. In den nächsten Schritten wird gezeigt, wie Parameter und Einstellungen konfiguriert werden müssen, die mit der ModBus Kommunikation zusammenhängen.

**6. Parametereinstellung -** Der Umrichter hat verschiedene Einstellungen die mit der ModBus Kommunikation zusammenhängen. Die Tabelle zeigt sie. Die Spalte "Bedarf" stellt dar, welche Parameter richtig gesetzt werden müssen, um eine Kommunikation zu ermöglichen. Beziehen Sie sich auch auf die entsprechende Dokumentation des Leitrechners und dessen Einstellungen.

| FktNr | Funktion                                       | Bedarf | Einstellbereich                                                                                                                                               |
|-------|------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A001  | Frequenzsollwertvorgabe                        | Ja     | 00eingebautes Poti<br>01Eingang O/OI<br>02F001/A020<br><b>03ModBus Netzwerk</b><br>10Rechenausgang                                                            |
| A002  | Startbefehl                                    | Ja     | 01Eingang FW/RV<br>02RUN-Taste<br>03ModBus Netzwerk                                                                                                           |
| b089  | Anzeigenauswahl für einen vernetzten Umrichter | _      | 01 Ausgangsfrequenz 02 Motorstrom 03 Drehrichtung 04 PID-Regler Istwert 05 Status digitale Eingänge 06 Status digitale Ausgänge 07 skalierte Ausgangsfrequenz |
| C071  | Baudrate                                       | Ja     | 044800 bps<br>059600 bps<br>0619200 bps                                                                                                                       |
| C072  | Adresse                                        | Ja     | 1 32                                                                                                                                                          |
| C074  | Parität                                        | Ja     | 00keine Parität<br>01gerade Parität<br>02ungerade Parität                                                                                                     |
| C075  | Stop bits                                      | Ja     | 1 oder 2 Stop bits                                                                                                                                            |
| C076  | Störungsauswahl                                | _      | 00Fehler (E60)<br>01Runterlauf und Fehler(E60)<br>02Deaktiviert<br>03Freies Auslaufen<br>04Runterlauf                                                         |
| C077  | Störungsunterbrechung                          | _      | Überwachungszeit 0,00 99,99s                                                                                                                                  |
| C078  | Wartezeit                                      | Ja     | Wartezeit des Umrichters bei<br>Empfang einer Störung<br>0 1000ms                                                                                             |




**HINWEIS:** Eine Änderung der o. g. Parameter haben auch sofortige Auswirkung. ModBus Änderungen werden erst nach Umschalten des DIP-Switch OPE/485 in Stellung "485" und Einschalten des Umrichters übernommen. Parameter C071 bis C078 können nicht über das Netzwerk geändert werden. Änderung dieser Parameter kann nur über die Tastatur erfolgen.

# Datenübertragungsprotokoll

# Übertragungsschema

Die Übertragung zwischen externen Steuerungen und den Umrichtern zeigt das untere Schema



- · Anfrage Senderahmen von der externen Steuerung zum Umrichter
- Antwort Empfangsrahmen vom Umrichter zur externen Steuerung

Der Umrichter sendet nur eine Antwort zurück, nachdem er eine Anfrage von der externen Steuerung erhalten hat. Jeder Rahmen ist wie folgt (mit Befehlen) formatgebunden.

| Rahmenformat      |
|-------------------|
| Dateikopf         |
| Slave-Adresse     |
| Funktionsnummer   |
| Daten             |
| Fehlerüberwachung |
| Dateianhang       |

# Konfiguration: Anfrage

#### Slave-Adresse:

- Nummer von 1 bis 32, die jedem Umrichter zugeordnet wird (Slave). (Nur der Umrichter gibt diese Adresse weiter, damit die Anfrage zugeordnet werden kann.)
- Wenn die Slave-Adresse "0" vergeben ist, kann die Anfrage gleichzeitig an alle Umrichter adressiert werden (Broadcasting).
- Beim "Broadcasting" werden keine Daten zurückgesendet.

#### Daten:

- Ein Programmbefehl wird in den Daten festgelegt.
- Das verwendete Datenformat der Serie L200 entspricht dem unten gezeigten ModBus-Datenformat.

| Datenname               | Beschreibung                                                    |
|-------------------------|-----------------------------------------------------------------|
| Coil<br>(Bit)           | Binärdaten die verglichen/geändert werden können (Länge 1 Bit)  |
| Holding Register (Wort) | Binärdaten die verglichen/geändert werden können (Länge 16 Bit) |

#### **Funktionsnummer:**

Auswahl einer Funktion, die der Umrichter ausführen soll. Mögliche Funktionsnummern der Serie L200 sind unten aufgelistet.

| Fkt<br>Nummer | Funktion                               | Maximale Daten-<br>größe<br>(Bytes/Auftrag) | Maximale Anzahl<br>Datenelemente/<br>Auftrag |
|---------------|----------------------------------------|---------------------------------------------|----------------------------------------------|
| 0 1 h         | Lese Coil-Status                       | 4                                           | 32 Coils (bits)                              |
| 0 3 h         | Lese Holding Register                  | 4                                           | 4 Register (bytes)                           |
| 0 5 h         | Schreibe in Coil                       | 1                                           | 1 Coil (bits)                                |
| 0 6 h         | Schreibe in Holding<br>Register        | 1                                           | 1 Register (bytes)                           |
| 0 8 h         | Fehlerkontrolle mit<br>Rückübertragung | _                                           | _                                            |
| 0 F h         | Schreibe in alle Coils                 | 4                                           | 32 Coils (bits)                              |
| 1 0 h         | Schreibe in alle Register              | 4                                           | 4 Register (bytes)                           |

#### Fehlerüberwachung:

Modbus-RTU verwendet CRC (Zyklische Blockprüfung) zur Fehlerüberwachung.

- Der CRC-Code ist ein 16-Bit Datum, dass 8-Bit Blöcke beliebiger Länge generiert.
- Der CRC-Code wird durch ein Polynom CRC-16 erzeugt (X16+ X15+ X2+ 1).

#### Dateikopf und Dateianhang (Zeitabstand):

Die Wartezeit ist die Zeit zwischen dem Empfang einer Anfrage vom Master und die Übertragung der Antwort vom Umrichter.

- Für die Wartezeit sind immer 3,5 Zeichen (24 bits) erforderlich. Ist die Wartezeit kleiner als 3,5 Zeichen, antwortet der Umrichter nicht.
- Die übertragene Wartezeit ergibt sich aus der Summe des Zeitabstandes (3,5 Zeichen) und dem Parameter C078 (Wartezeit).

# **Konfiguration: Antwort**

#### Erforderliche Übertragungszeit:

- Das Zeitraster zwischen Empfang einer Anfrage vom Master und der Übertragung der Antwort vom Umrichter ergibt sich aus der Summe des Zeitabstandes (3,5 Zeichen) und dem Parameter C078 (Wartezeit).
- Der Master muss ein Mindestzeitraster des Zeitabstandes (3,5 Zeichen oder länger) gewährleisten, bevor eine weitere Anfrage, nach Empfang der letzten Antwort, an den Umrichter gesendet werden kann.

#### **Normale Antwort:**

- Bei Empfang des Parameters "Testschleife (08h) gibt der Umrichter die Antwort mit dem gleichen Inhalt zurück.
- Bei Empfang des Parameters "Schreibe in Register oder Coil" (05h, 06h, 0Fh oder 10h) antwortet der Umrichter sofort.
- Bei Empfang des Parameters "Lese Register oder Coil" (01h oder 03h) antwortet der Umrichter mit den gleichen Parametern und der Slave-Adresse wie bei der Anfrage.

#### Antwort bei Auftreten eines Fehlers:

- Wenn in einer Anfrage ein Fehler erkannt wird (außer bei einem Übertragungsfehler), sendet der Umrichter eine Ausnahmeantwort, ohne jedoch etwas auszuführen.
- Der Fehler kann in den Parametern der Antwort kontrolliert werden. Die Parameter der Fehlerantwort ergeben sich aus der Summe des Parameters der Anfrage und 80h.
- Der Fehlerinhalt ist dem Fehlercode zu entnehmen.

| Konfiguration   |
|-----------------|
| Slave-Adresse   |
| Funktionsnummer |
| Fehlercode      |
| CRC-16          |

| Fehlercode | Beschreibung                                                                                                                                                                              |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 1 h      | Die ausgewählte Funktion wird nicht unterstützt                                                                                                                                           |
| 0 2 h      | Die ausgewählte Adresse wurde nicht gefunden                                                                                                                                              |
| 0 3 h      | Das ausgewählte Datenformat ist nicht korrekt                                                                                                                                             |
| 2 1 h      | Die geschriebenen Daten liegen außerhalb des Umrichterbereichs                                                                                                                            |
| 2 2 h      | Die ausgewählten Funktionen sind im Umrichter nicht abrufbar.  • Funktion kann nicht geändert werden, da Umrichter in Betrieb  • Funktion benötigt einen ENTER-Befehl während des Laufens |
|            | <ul> <li>Funktion, bei einem Fehler, die in ein Register geschrieben wird</li> <li>Funktion, die in ein Leseregister (oder Coil) geschrieben wird</li> </ul>                              |

#### **Keine Antwort:**

In den unteren Fällen ignoriert der Umrichter die Anfrage und antwortet nicht.

- · Bei Emfang einer Anfrage in der Betriebsart "Broadcasting"
- Bei Auftreten eines Übertragungsfehlers beim Empfang einer Anfrage
- Bei unterschiedlichen Slave-Adressen in der Anfrage und des Umrichters
- Bei zu kleinem Zeitabstand (kleiner 3,5 Zeichen) zwischen den Daten und einer neuen Meldung
- Bei ungültiger Datenlänge der Anfrage



**HINWEIS:** Erneutes Übertragen der gleichen Anfrage, unter Verwendung einer Zeitverzögerung, wenn innerhalb der Standardzeit keine Antwort auf die vorausgegangene Anfrage gekommen ist.

# **Bedeutung der Parameter**

# Lese Coil-Status [01h]:

Diese Funktion liest den Status (ON/OFF) der ausgewählten Coils.

- Auslesen der Steuerklemmen [1] [5] mit der Slave-Adresse "8".
- Im Beispiel wird folgender Zustand der Digital-Eingänge angenommen.

| Begriff         | Daten |     |     |     |     |
|-----------------|-------|-----|-----|-----|-----|
| Digital-Eingang | [1]   | [2] | [3] | [4] | [5] |
| Coil-Status     | ON    | ON  | ON  | OFF | ON  |

#### Anfrage:

#### Beispiel Nr. Feldbezeichnung (Hex) Slave-Adresse \*1 80 2 Parameter 01 3 Coil Startadresse 00 (high byte) 4 Coil Startadresse 07 (low byte) 5 **Anzahl Coils** 00 (high byte) \*2 6 **Anzahl Coils** 06 (low byte) \*2 7 CRC-16 (high byte) 0D 8 CRC-16 (low byte) 50

# Hinweis 1: Broadcasting ist inaktiv. Hinweis 2: Bei Auswahl 0 oder größer 32 wird eine Fehlermeldung

"03h" ausgegeben.

#### **Antwort:**

| Nr. | Feldbezeichnung          | Beispiel<br>(Hex) |
|-----|--------------------------|-------------------|
| 1   | Slave-Adresse            | 08                |
| 2   | Parameter                | 01                |
| 3   | Datenlänge<br>(in bytes) | 01                |
| 4   | Coil-Daten *3            | 17                |
| 5   | CRC-16(high byte)        | 12                |
| 6   | CRC-16 (low byte)        | 1A                |

Hinweis 3: Übertragene Daten der ausgewählten Datenbytes (Datenmenge).

- Die Antwort der Daten entsprechen dem Zustand der Digital-Eingänge der Coils 7 14.
- Bei Datum "17h = 00010111b" entspricht das Coil 7 dem LSB.

| Begriff     | Daten |     |     |    |     |    |    |    |
|-------------|-------|-----|-----|----|-----|----|----|----|
| Coil-Nummer | 14    | 13  | 12  | 11 | 10  | 9  | 8  | 7  |
| Coil-Status | OFF   | OFF | OFF | ON | OFF | ON | ON | ON |

- Wenn ein zu lesender Coil außerhalb des definierten Bereichs ist, enthält der letzte Daten-Coil "0", genau wie alle anderen Coils außerhalb des Bereichs.
- Wenn der Lesestatus des Coils nicht normal ausgeführt werden kann, siehe Fehlerantwort.

# Lese Holding Register [03h]:

Diese Funktion liest den Inhalt der ausgewählten aufeinander folgenden Holding Register (der ausgewählten Adressregister). Ein Beispiel ist unten beschrieben.

- Lesen von drei vorangegangenen Störmeldungen eines Umrichters mit der Slave-Adresse "5".
- Dieses Beispiel stellt die vorangegangenen Störmeldungen wie folgt dar:

| L200 Befehl | Befehl D081 (N) D082 (N-1) |                     | D083 (N-2)    |
|-------------|----------------------------|---------------------|---------------|
| Coil-Nummer | 0019h                      | 001Ah               | 0018h         |
| Störmeldung | Überspannung (E07)         | Unterspannung (E09) | Keine Störung |

# Anfrage:

| Nr. | Feldbezeichnung                        | Beispiel<br>(Hex) |
|-----|----------------------------------------|-------------------|
| 1   | Slave-Adresse *1                       | 05                |
| 2   | Parameter                              | 03                |
| 3   | Register Startadresse (high byte)      | 00                |
| 4   | Register Startadresse (low byte)       | 19                |
| 5   | Anzahl Holding<br>Register (high byte) | 00                |
| 6   | Anzahl Holding<br>Register (low byte)  | 03                |
| 7   | CRC-16 (high byte)                     | D5                |
| 8   | CRC-16 (low byte)                      | 88                |

**Hinweis 1:** Broadcasting ist inaktiv.

#### **Antwort:**

|     | T .                                      | ı                 |
|-----|------------------------------------------|-------------------|
| Nr. | Feldbezeichnung                          | Beispiel<br>(Hex) |
| 1   | Slave-Adresse                            | 05                |
| 2   | Parameter                                | 03                |
| 3   | Datenlänge (in bytes)<br>*2              | 06                |
| 4   | Register Startadresse (high byte)        | 00                |
| 5   | Register Startadresse (low byte)         | 07                |
| 6   | Register Startadresse<br>+ 1 (high byte) | 00                |
| 7   | Register Startadresse<br>+1 (low byte)   | 09                |
| 8   | Register Startadresse<br>+ 2 (high byte) | 00                |
| 9   | Register Startadresse<br>+2 (low byte)   | FF                |
| 10  | CRC-16 (high byte)                       | 36                |
| 11  | CRC-16 (low byte)                        | 37                |

Hinweis 2: Übertragene Daten der ausgewählten Datenbytes (Datenmenge). Hier werden 6 Bytes für die antwortenden Holding Register verwendet.

Die Daten in der Antwort sind wie folgt:

| Antwort Buffer | 4               | 5                 | 6               | 7                 | 8                  | 9                 |
|----------------|-----------------|-------------------|-----------------|-------------------|--------------------|-------------------|
| Coil-Nummer    | + 0 (high byte) | + 0 (low<br>byte) | + 1 (high byte) | + 1 (low<br>byte) | + 2 (high<br>byte) | + 2 (low<br>byte) |
| Coil-Status    | 00h             | 07h               | 00h             | 09h               | 00h                | FFh               |
| Störmeldung    | Überspannung    |                   | Untersp         | annung            | Keine S            | Störung           |

Wenn der Lesestatus des Coils nicht normal ausgeführt werden konnte, siehe Fehlerantwort.

# Schreibe in Coil [05h]:

Diese Funktion schreibt Daten in einen einzelnen Coil. Änderung des Coil-Status:

| Daten                     | Coil Status |             |  |
|---------------------------|-------------|-------------|--|
| Dateii                    | OFF nach ON | ON nach OFF |  |
| Datenänderung (high byte) | FFh         | 00h         |  |
| Datenänderung (low byte)  | 00h         | 00h         |  |

Ein Beispiel ist unten beschrieben (um den Umrichter zu steuern, A002=03):

- Senden eines RUN-Befehls an einen Umrichter mit der Slave Adresse "10"
- Dieses Beispiel wird in Coil-Nummer "1" geschrieben.

#### Anfrage:

| Nr. | Feldbezeichnung               | Beispiel<br>(Hex) |
|-----|-------------------------------|-------------------|
| 1   | Slave-Adresse *1              | 0A                |
| 2   | Parameter                     | 05                |
| 3   | Coil Startadresse (high byte) | 00                |
| 4   | Coil Startadresse (low byte)  | 01                |
| 5   | Datenänderung (high byte)     | FF                |
| 6   | Datenänderung (low byte)      | 00                |
| 7   | CRC-16 (high byte)            | DC                |
| 8   | CRC-16 (low byte)             | 81                |

**Hinweis 1:** Antworten sind nicht für Anfrage "Broadcasting".

# Antwort:

| Nr. | Feldbezeichnung               | Beispiel<br>(Hex) |
|-----|-------------------------------|-------------------|
| 1   | Slave-Adresse                 | 0A                |
| 2   | Parameter                     | 05                |
| 3   | Coil Startadresse (high byte) | 00                |
| 4   | Coil Startadresse (low byte)  | 01                |
| 5   | Datenänderung (high byte)     | FF                |
| 6   | Datenänderung (low byte)      | 00                |
| 7   | CRC-16 (high byte)            | DC                |
| 8   | CRC-16 (low byte)             | 81                |

Wenn das Beschreiben in ein ausgewähltes Coil fehlgeschlagen ist, siehe Fehlerantwort.

#### Schreiben in ein Holding Register [06h]:

Diese Funktion schreibt Daten in ein ausgewähltes Holding Register.

- Die Festfrequenz 0 (A020) von "50Hz" soll an den Umrichter mit der Slave-Adresse "5" geschrieben werden.
- Dabei wird der Datenwert "500(1F4h)", entsprechend "50Hz", als Ergebnis des Registers "003Ah" übertragen. Die Festfrequenz 0 (A020) hat den Anfangswert 0,1Hz.

# Anfrage:

#### Beispiel Nr. Feldbezeichnung (Hex) 1 Slave-Adresse \*1 05 2 Parameter 06 3 Register Start-00 adresse (high byte) 4 Register Start-3A adresse (low byte) 5 Datenänderung 01 (high byte) 6 Datenänderung F4 (low byte) 7 CRC-16 (high byte) 8A 8 CRC-16 (low byte) 54

**Antwort:** 

| Nr. | Feldbezeichnung                        | Beispiel<br>(Hex) |
|-----|----------------------------------------|-------------------|
| 1   | Slave-Adresse                          | 05                |
| 2   | Parameter                              | 06                |
| 3   | Register Start-<br>adresse (high byte) | 00                |
| 4   | Register Start-<br>adresse (low byte)  | 3A                |
| 5   | Datenänderung (high byte)              | 01                |
| 6   | Datenänderung (low byte)               | F4                |
| 7   | CRC-16 (high byte)                     | A8                |
| 8   | CRC-16 (low byte)                      | 54                |

**Hinweis 1:** Antworten sind nicht für Anfrage "Broadcasting".

Wenn das Beschreiben in ein ausgewähltes Holding Register fehlgeschlagen ist, siehe Fehlerantwort.

# Fehlerkontrolle mit Rückübergabe [08h]:

Diese Funktion überprüft eine Master-Slave Übertragung unter Verwendung von beliebigen Testdaten.

• Senden und Empfangen von Testdaten an einen Umrichter mit der Slave-Adresse "1" (wie eine Fehlerkontrolle mit Rückübergabe).

# Anfrage:

#### Beispiel Nr. Feldbezeichnung (Hex) Slave-Adresse \*1 1 01 2 Parameter 80 3 Test Subcode 00 (high byte) 4 Test Subcode 00 (low byte) 5 Beliebig Daten (high byte) 6 Daten Beliebig (low byte) 7 CRC-16 CRC (high byte) 8 CRC-16 (low byte) CRC

#### Antwort:

| Nr. | Feldbezeichnung          | Beispiel<br>(Hex) |
|-----|--------------------------|-------------------|
| 1   | Slave-Adresse            | 01                |
| 2   | Parameter                | 08                |
| 3   | Test Subcode (high byte) | 00                |
| 4   | Test Subcode (low byte)  | 00                |
| 5   | Daten<br>(high byte)     | Beliebig          |
| 6   | Daten<br>(low byte)      | Beliebig          |
| 7   | CRC-16<br>(high byte)    | CRC               |
| 8   | CRC-16 (low byte)        | CRC               |

**Hinweis 1:** Broadcasting ist inaktiv.

Die Testdaten (Test Subcode) sind nur für die Fehlerkontrolle (00h, 00h) und nicht für andere Befehle gültig.

# Schreiben in Coils [0Fh]:

Diese Funktion schreibt Daten in aufeinander folgende Coils.

- Änderung des Zustands der Steuerklemmen [1] bis [5] eines Umrichters mit der Slave-Adresse "5".
- Im Beispiel wird folgender Zustand der Digital-Eingänge angenommen.

| Begriff                | Daten |     |     |     |     |  |  |
|------------------------|-------|-----|-----|-----|-----|--|--|
| Digital-Eingang        | [1]   | [2] | [3] | [4] | [5] |  |  |
| Coil-Nummer            | 7     | 8   | 9   | 10  | 11  |  |  |
| Status Digital-Eingang | ON    | ON  | ON  | OFF | ON  |  |  |

# Anfrage:

#### Beispiel Nr. Feldbezeichnung (Hex) 1 Slave-Adresse \*1 05 2 Parameter 0F 3 Coil Startadresse 00 (high byte) Coil Startadresse 4 07 (low byte) 5 **Anzahl Coils** 00 (high byte) 6 **Anzahl Coils** 06 (low byte) 7 Byte-Nummer \*2 02 8 Datenänderung 17 (high byte) \*2 9 Datenänderung 00 (low byte) \*2 10 CRC-16 (high byte) DA 11 CRC-16 (low byte) EF

# **Hinweis 1:** Broadcasting ist inaktiv. **Hinweis 2:** Die Datenänderung setzt

sich aus dem High-byte und Low-byte zusammen. Bei ungeraden Datenlängen (in bytes) sollte eine "1" addiert werden, um eine gerade Anzahl zu erreichen.

#### Antwort:

| Nr. | Feldbezeichnung          | Beispiel<br>(Hex) |
|-----|--------------------------|-------------------|
| 1   | Slave-Adresse            | 05                |
| 2   | Parameter                | 0F                |
| 3   | Datenlänge<br>(in bytes) | 00                |
| 4   | Coil-Daten *3            | 07                |
| 5   | Anzahl Coils (high byte) | 00                |
| 6   | Anzahl Coils (low byte)  | 06                |
| 7   | CRC-16<br>(high byte)    | 65                |
| 8   | CRC-16<br>(low byte)     | 8C                |

#### Schreiben in Holding Register [10h]:

Diese Funktion schreibt Daten in aufeinander folgende Holding Register.

- Schreibe "3000 Sek." als erste Beschleunigungszeit (F002) in einen Umrichter mit der Slave-Adresse "1".
- Dabei wird der Datenwert "300000 (493E0h)", entsprechend "3000 Sek.", als Ergebnis der Register "0024h" und "0025h" übertragen. Wenn in ein ausgewähltes Coil geschrieben wird, siehe Ausnahmeantwort. (F002) hat den Anfangswert 0,01 sek..

#### Anfrage:

#### Beispiel Nr. Feldbezeichnung (Hex) Slave-Adresse \*1 01 1 2 Parameter 10 3 Start Adresse 00 (high byte) 4 Start Adresse 24 (low byte) 5 **Anzahl Holding** 00 Register (high byte) 6 Anzahl der Holding 02 Register (low byte) 7 Byte-Nummer \*2 04 8 Datenänderung 1 00 (high byte) 9 Datenänderung 1 04 (low byte) 10 Datenänderung 2 93 (high byte) 11 Datenänderung 2 E0 (low byte) CRC-16 (high byte) 12 DC 13 FD CRC-16 (low byte)

#### Antwort:

| Nr. | Feldbezeichnung                       | Beispiel<br>(Hex) |
|-----|---------------------------------------|-------------------|
| 1   | Slave-Adresse                         | 01                |
| 2   | Parameter                             | 10                |
| 3   | Start Adresse (high byte)             | 00                |
| 4   | Start Adresse<br>(low byte)           | 24                |
| 5   | Anzahl Holding<br>Register(high byte) | 00                |
| 6   | Anzahl Holding<br>Register (low byte) | 02                |
| 7   | CRC-16<br>(high byte)                 | 01                |
| 8   | CRC-16<br>(low byte)                  | C3                |

**Hinweis 1:** Broadcasting ist inaktiv. **Hinweis 2:** Dies ist nicht die Anzahl der

Holding Register, sondern die Anzahl der zu ändernder Bitter

den Bytes.

Wenn das Beschreiben in ausgewählte Holding Register fehlgeschlagen ist, siehe Fehlerantwort.

#### **Fehlerantwort:**

Wenn eine Anfrage gesendet wird (außer Anfrage "Broadcasting") fordert der Master immer eine Antwort vom Umrichter. Normalerweise antwortet der Umrichter entsprechend. Bei Auftreten eines Fehlers in der Anfrage, antwortet der Umrichter mit einer Fehlerantwort. Die Bereiche der Fehlerantwort sind unten dargestellt.

| Konfiguration   |  |  |  |
|-----------------|--|--|--|
| Slave-Adresse   |  |  |  |
| Funktionsnummer |  |  |  |
| Fehlercode      |  |  |  |
| CRC-16          |  |  |  |

Der Inhalt der Bereiche ist unten erklärt. Die Funktionsnummer der Fehlerantwort wird aus der Funktionsnummer der Anfrage plus 80h gebildet. Der Fehlercode gibt den Faktor (80h) für die Fehlerantwort an.

| Funktionsnummer |               |  |  |  |  |  |
|-----------------|---------------|--|--|--|--|--|
| Anfrage         | Fehlerantwort |  |  |  |  |  |
| 0 1 h           | 8 1 h         |  |  |  |  |  |
| 0 3 h           | 8 3 h         |  |  |  |  |  |
| 0 5 h           | 8 5 h         |  |  |  |  |  |
| 0 6 h           | 8 6 h         |  |  |  |  |  |
| 0 F h           | 8 F h         |  |  |  |  |  |
| 10h             | 9 0 h         |  |  |  |  |  |

|       | Fehlercode                                                                                                                                    |  |  |  |  |  |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Code  | Beschreibung                                                                                                                                  |  |  |  |  |  |  |
| 0 1 h | Die ausgewählte Funktion wird nicht unterstützt.                                                                                              |  |  |  |  |  |  |
| 0 2 h | Die ausgewählte Adresse wurde nicht gefunden.                                                                                                 |  |  |  |  |  |  |
| 0 3 h | Das ausgewählte Datenformat ist nicht korrekt.                                                                                                |  |  |  |  |  |  |
| 2 1 h | Die geschriebenen Daten liegen außerhalb des Umrichterbereichs.                                                                               |  |  |  |  |  |  |
| 2 2 h | Die ausgewählten Funktionen sind im Umrichter nicht abrufbar.  • Funktion kann nicht geändert werden, da der Umrichter im Betriebszustand ist |  |  |  |  |  |  |
|       | Funktion benötigt einen ENTER-Befehl während des Laufens.                                                                                     |  |  |  |  |  |  |
|       | <ul> <li>Funktion, die während des Auslösens eines Fehlers in ein Register<br/>geschrieben wird.</li> </ul>                                   |  |  |  |  |  |  |
|       | Funktion, die in ein Leseregister (oder Coil) geschrieben wird                                                                                |  |  |  |  |  |  |

# Speichern von neuen Registerdaten (ENTER-Befehl)

Nach Anwendung der Befehle "Schreiben in ein Holding Register" (06h) oder "Schreiben in Holding Register" (10h) sind die Daten noch nicht abgespeichert. Wenn der Umrichter spannungslos geschaltet wird, sind die neuen Daten verloren und die vorherigen Daten bleiben erhalten. Der ENTER-Befehl ermöglicht das Abspeichern der neuen Daten in den Umrichter. Die Anweisungen unten beschreiben den ENTER-Befehl.

#### Anwendung des ENTER-Befehls:

• Schreiben von beliebigen Daten in den Speicher (Holding Register-Nummer 0900h) mit dem Befehl "Schreiben in ein Holding Register" (06h).



**HINWEIS:** Der ENTER-Befehl benötigt zur Ausführung etwas Zeit. Der Verlauf kann mit der Überwachung des Signals für Daten schreiben kontrolliert werden (Coil-Nummer 001Ah).



**HINWEIS:** Die Lebensdauer eines Speicherelements ist begrenzt (ca. 100.000 Schreibbefehle). Häufige Anwendung des ENTER-Befehls verringern die Lebensdauer.

# **ModBus Datenliste**

# **ModBus Coil-Liste**

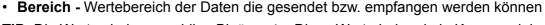
Die Tabelle listet die elementaren Coils der Umrichterschnittstelle zum Netzwerk auf.

- Coil-Nummer Die Adresse der Coils, als binärer Wert
- Funktion Funktionsbezeichnung des Coils
- R/W Lese- (R) oder Schreib-/Lese- (R/W) Zugriff der Umrichterdaten
- Beschreibung Beschreibung der Auswahlmöglichkeiten
- **Modicon-Mode** Verschiebung der ersten Adresse (Startadresse). Modicon-Mode ist bei Hitachi SPS nicht aktiv

|                       | Liste der Coil-Nummern |                          |                   |                           |     |                                               |  |
|-----------------------|------------------------|--------------------------|-------------------|---------------------------|-----|-----------------------------------------------|--|
| Modicon-Mode<br>aktiv |                        | Modicon-Mode nicht aktiv |                   |                           |     |                                               |  |
| Coil-Nr.<br>(hex)     | Coil-Nr.<br>(dez)      | Coil-Nr.<br>(hex)        | Coil-Nr.<br>(dez) | Funktion                  | R/W | Beschreibung                                  |  |
| 0001h                 | 00001                  | 0000h                    | 00000             | Startbefehl               | R/W | 0 Stop<br>1 Run (bei A003=03)                 |  |
| 0002h                 | 00002                  | 0001h                    | 00001             | Drehrichtungs-<br>vorgabe | R/W | 0 REV<br>1 FW (bei A003=03)                   |  |
| 0003h                 | 00003                  | 0002h                    | 00002             | Störung extern (EXT)      | R/W | 0 keine Störmeldung<br>1 Störmeldung ausgeben |  |
| 0004h                 | 00004                  | 0003h                    | 00003             | Reset (RS)                | R/W | 0 keine Rücksetzbedingung 1 Reset             |  |
| 0005h                 | 00005                  | 0004h                    | 00004             | (Reserviert)              | R   | _                                             |  |
| 0006h                 | 00006                  | 0005h                    | 00005             | (Reserviert)              | R   | _                                             |  |
| 0007h                 | 00007                  | 0006h                    | 00006             | Digital-Eingang 1         | R/W | 0 OFF *1                                      |  |
| 0008h                 | 80000                  | 0007h                    | 00007             | Digital-Eingang 2         | R/W | 1 ON                                          |  |
| 0009h                 | 00009                  | 0008h                    | 80000             | Digital-Eingang 3         | R/W |                                               |  |
| 000Ah                 | 00010                  | 0009h                    | 00009             | Digital-Eingang 4         | R/W |                                               |  |
| 000Bh                 | 00011                  | 000Ah                    | 00010             | Digital-Eingang 5         | R/W |                                               |  |
| 000Dh                 | 00013                  | 000Bh                    | 00011             | (Nicht verwendet)         | _   | _                                             |  |
| 000Eh                 | 00014                  | 000Dh                    | 00013             | Betriebsstatus            | R   | 0 Stop (wie d003)<br>1 Run                    |  |
| 000Fh                 | 00015                  | 000Eh                    | 00014             | Drehrichtung              | R   | 0 FW<br>1 RV                                  |  |
| 0010h                 | 00016                  | 000Fh                    | 00015             | Betriebsbereit            | R   | 0 nicht bereit<br>1 Bereit                    |  |
| 0011h                 | 00017                  | 0010h                    | 00016             | (Reserviert)              | R   | _                                             |  |
| 0012h                 | 00018                  | 0011h                    | 00017             | (Reserviert)              | R   | _                                             |  |
| 0013h                 | 00019                  | 0012h                    | 00018             | (Reserviert)              | R   | _                                             |  |

| Liste der Coil-Nummern |                   |                   |                   |                                               |     |                       |
|------------------------|-------------------|-------------------|-------------------|-----------------------------------------------|-----|-----------------------|
| Modico<br>ak           | n-Mode<br>tiv     | Modico<br>nicht   |                   |                                               |     |                       |
| Coil-Nr.<br>(hex)      | Coil-Nr.<br>(dez) | Coil-Nr.<br>(hex) | Coil-Nr.<br>(dez) | Funktion                                      | R/W | Beschreibung          |
| 0014h                  | 00020             | 0013h             | 00019             | Alarm                                         | R   | 0Normal<br>1Störung   |
| 0015h                  | 00021             | 0014h             | 00020             | PID Abweichung                                | R   | 0 OFF                 |
| 0016h                  | 00022             | 0015h             | 00021             | Überlast                                      | R   | 1 ON                  |
| 0017h                  | 00023             | 0016h             | 00022             | Frequenz erreicht (im Hochlauf)               | R   |                       |
| 0018h                  | 00024             | 0017h             | 00023             | Frequenz erreicht (Konstante Geschwindigkeit) | R   |                       |
| 0019h                  | 00025             | 0018h             | 00024             | Run-Modus                                     | R   |                       |
| 001Ah                  | 00026             | 0019h             | 00025             | Daten schreiben                               | R   | 0Normal<br>1Schreiben |
| 001Bh                  | 00027             | 001Ah             | 00026             | CRC-Fehler                                    | R   | 0kein Fehler *2       |
| 001Ch                  | 00028             | 001Bh             | 00027             | Überlauffehler                                | R   | 1 Fehler              |
| 001Dh                  | 00029             | 001Ch             | 00028             | Rahmen-Fehler                                 | R   |                       |
| 001Eh                  | 00030             | 001Dh             | 00039             | Paritätsfehler                                | R   |                       |
| 001Fh                  | 00031             | 001Eh             | 00030             | Checksum-Fehler                               | R   |                       |

Hinweis 1: Normalerweise "ON" wenn der Digital-Eingang an der I/O-Karte oder das Coil auf "ON" gesetzt ist. Unter den Digital-Eingängen ist die Steuerung über die I/O-Karte (Hardware) vorrangig. Ist es nicht möglich den Zustand des Coil-Status von "ON" nach "OFF" zu versetzen (bei Defekt der Übertragungsleitung), muss das Signal an den Eingangsklemmen entfernt werden.


**Hinweis 2:** Ein Übertragungsfehler bleibt solange erhalten, bis er gelöscht wird. (Der Fehler kann auch während des Betriebs gelöscht werden).

# **ModBus Holding Register**

Die Tabelle listet die Holding Register der Umrichterschnittstelle zum Netzwerk auf.

- **Funktionsnummer** Referenzcode des Umrichters für Parameter oder Funktionen (entspricht dem Bedienfeld des Umrichters)
- Funktion Funktionsbezeichnungen der Parameter oder Funktionen des Umrichters
- R/W Lese- (R) oder Schreib-/Lese- (R/W) Zugriff der Umrichterdaten
- Beschreibung Parameter- oder Einstellmöglichkeiten (entspricht Kapitel 3).
- Reg. Registeradressen der Werte. Die aktuelle Netzwerkadresse beginnt mit 40001

   Offset. Einige Werte setzen sich aus high-byte und low-byte Adressen zusammen.
   Bei Hitachi SPS ist der Modicon-Mode nicht aktiv. Bei aktivem Modicon-Mode gilt der erste Wert in der Spalte "Reg. (hex)/Reg. (dez)". Bei nicht aktivem Modicon-Mode gilt der zweite Wert in der Spalte "Reg. (hex)/Reg. (dez)". Die Vorgehensweise der Adressierung entspricht der Zuordnung wie bei den Coil-Adressen.





**TIP:** Die Werte sind ganzzahlige Binärwerte. Diese Werte haben kein Komma, daher werden bei vielen Parametern die Istwerte mit 10 oder 100 multipliziert, damit die Ganzzahligkeit gewährleistet ist. Das Netzwerk muss den aufgelisteten Bereich für die Netzwerkdaten verwenden. Der Umrichter teilt automatisch die empfangenen Werte durch einen geeigneten Faktor, um das Komma für die interne Verwendung zu erstellen. Ähnlich wie Host-Rechner, muss zur Verwendung von technischen Einheiten der gleiche Faktor verwendet werden. Bei Datenübertragung zum Umrichter muss der Host-Rechner die Werte so skalieren, dass ein ganzzahliger Bereich übertragen wird.

Lösung - Die Größe des Wertes wird im LSB dargestellt. Ist der Netzwerkdatenbereich größer als der interne Umrichterbereich wird dies teilweise durch diese 1-Bit Lösung dargestellt.

|     | Liste der Holding Register |     |                                                                                                                                                                 |               |               |         |                |  |  |  |  |
|-----|----------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|---------|----------------|--|--|--|--|
| Fkt |                            |     |                                                                                                                                                                 | Netzwerkdaten |               |         |                |  |  |  |  |
| Nr. | Funktion                   | R/W | Beschreibung                                                                                                                                                    | Reg.<br>(hex) | Reg.<br>(dez) | Bereich | Grund-<br>wert |  |  |  |  |
| _   | Ausgangsfrequenz           |     | Ausgangsfrequenz<br>(A001=03 aktivieren des<br>Netzwerk-Registers),<br>Bereich 0.0 - 400.0 Hz                                                                   | 002h/<br>001h | 0002/<br>0001 | 0-4000  | 0,1 Hz         |  |  |  |  |
| _   | Umrichterstatus            | R/W | 00Initialisierungs zustand 01(Reserviert) 02Stop-Modus 03Run-Modus 04Freies Auslaufen 05Tippbetrieb 06DC-Bremsen 07Wiederanlauf 08Störmeldungen 09Unterspannung | 003h/<br>002h | 0003/<br>0002 | 0-9     | _              |  |  |  |  |

|                |                                                                            |     | Liste der Holding Register                                                       | •               |               |              |                |
|----------------|----------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------|-----------------|---------------|--------------|----------------|
| Fkt            |                                                                            |     |                                                                                  |                 | Netzw         | verkdaten    |                |
| Nr.            | Funktion                                                                   | R/W | Beschreibung                                                                     | Reg.<br>(hex)   | Reg.<br>(dez) | Bereich      | Grund-<br>wert |
| _              | Istwert (PV)                                                               |     | Wert PID-Regler des<br>Netzwerks (A076=02),<br>Bereich 0 - 100%                  | 005h/<br>004h   | 0005/<br>0004 | 0-1000       | 0,1%           |
| d001           | Ausgangsfrequenz<br>[Hz]                                                   | R   | Anzeige Ausgangsfrequenz des Motors<br>0,0 400,0 Hz                              | 1002h/<br>1001h | 4098/<br>4097 | 0-4000       | 0,1 Hz         |
| d002           | Motorstrom [A]<br>*1                                                       | R   | Anzeige Ausgangsstrom<br>des Motors<br>0 200% des eingestell-<br>ten Motorstroms | 1003h/<br>1002  | 4099/<br>4098 | 0-2000       | 0,1%           |
| d003           | Drehrichtung                                                               | R   | 3 Einstellungen:<br>00 Stop<br>01 Rechtslauf<br>02 Linkslauf                     | 1004h/<br>1003h | 4100/<br>4099 | 0, 1, 2      | _              |
| d004<br>(high) | Istwert x Anzeige-<br>faktor [%]                                           | R   | Einstellung Anzeigefaktor<br>der Funktion A075 im                                | 1005h/<br>1004h | 4101/<br>4100 | 0-<br>999900 | 0,00%          |
| d004<br>(low)  | (nur verfügbar<br>wenn PID-Regler<br>aktiv)                                | R   | Bereich von 0,00 99900                                                           | 1006h/<br>1005h | 4102/<br>4101 |              |                |
| d005           | Signalzustand<br>Digital-Eingänge 1-<br>5                                  | R   | Zustand Digital-Eingänge<br>[x]<br>Bit 0 = [1] bis Bit 4 = [5]                   | 1007h/<br>1006h | 4103/<br>4102 | 0-63         | _              |
| d006           | Signalzustand<br>Digital-Ausgänge<br>11, 12 und Relais-<br>ausgang AL0-AL2 | R   | Zustand Digital-Ausgänge [x] Bit 0 = [11], Bit 1 = [12], Bit 2 = [AL]            | 1008h/<br>1007h | 4104/<br>4103 | 0-7          | _              |
| d007<br>(high) | Ausgangsfrequenz x Frequenz-                                               | R   | Anzeige Produkt aus<br>Frequenzfaktor (Funktion                                  | 1009h/<br>1008h | 4105/<br>4104 | 0-<br>999999 | 0,01<br>Hz     |
| d007<br>(low)  | faktor                                                                     | R   | b086) und Ausgangs-<br>frequenz<br>0,00 99999                                    | 100Ah/<br>1009h | 4106/<br>4105 |              |                |
| d013           | Ausgangsspannung [V]                                                       | R   | Ausgangsspannung Motor 0,00 200%                                                 | 100Ch/<br>100Bh | 4108/<br>4107 | 0-20000      | 0,01%          |
| d016<br>(high) | Betriebszeit                                                               | R   | Umrichter RUN-Modus<br>0 999000                                                  | 100Eh/<br>100Dh | 4110/<br>4109 | 0-<br>999999 | Stunde         |
| d016<br>(low)  |                                                                            | R   |                                                                                  | 100Fh/<br>100Eh | 4111/<br>4110 |              |                |
| d017<br>(high) | Netz-Ein Zeit                                                              | R   | Umrichter Netz-Ein 0 999000                                                      | 1010h/<br>100Fh | 4112/<br>4111 | 0-<br>999999 | Stunde         |
| d017<br>(low)  |                                                                            | R   |                                                                                  | 1011h/<br>1010h | 4113/<br>4112 |              |                |
| d080           | Gesamtzahl aufgetretener Störungen                                         | R   | Anzahl Störungen<br>0 65535                                                      | 0011h/<br>0010h | 0017/<br>0016 | 0-65535      | Anzahl         |

|      | Liste der Holding Register             |     |                     |                  |               |          |                |  |  |  |  |
|------|----------------------------------------|-----|---------------------|------------------|---------------|----------|----------------|--|--|--|--|
| Fkt  |                                        |     |                     |                  | Netzw         | erkdaten |                |  |  |  |  |
| Nr.  | Funktion                               | R/W | Beschreibung        | Reg.<br>(hex)    | Reg.<br>(dez) | Bereich  | Grund-<br>wert |  |  |  |  |
| d081 | Störung (Zuletzt aufgetretene Störung) | R   | Anzeige Störmeldung | 0012h/<br>00011h | 0018/<br>0017 | _        | _              |  |  |  |  |
| d082 | 2. Störung                             | R   | Anzeige Störmeldung | 001Ch/<br>001Bh  | 0028/<br>0027 | _        | _              |  |  |  |  |
| d083 | 3. Störung                             | R   | Anzeige Störmeldung | 0026h/<br>0025h  | 0038/<br>0037 | _        | _              |  |  |  |  |

**Hinweis 1:** Angenommener Nennstrom von 1000 (für d002).

Die Tabelle zeigt Holding Register der Gruppe "d" (Monitorfunktionen).

|       | Holding Register, Gruppe "d" (Monitorfunktionen) |     |                                 |                 |               |         |  |  |  |  |  |
|-------|--------------------------------------------------|-----|---------------------------------|-----------------|---------------|---------|--|--|--|--|--|
|       | Funktion                                         |     |                                 | Netzwerkdaten   |               |         |  |  |  |  |  |
| FktNr |                                                  | R/W | Beschreibung                    | Reg.<br>(hex)   | Reg.<br>(dez) | Res.    |  |  |  |  |  |
|       |                                                  | R   | Störmelderegister 1: Fehler-Nr. | 0012h/<br>0011h | 0018/<br>0017 | _       |  |  |  |  |  |
|       |                                                  | R   | Ausgangsfrequenz                | 0014h/<br>0013h | 0020/<br>0019 | 0,1 Hz  |  |  |  |  |  |
|       |                                                  | R   | Motorstrom                      | 0016h/<br>0015h | 0022/<br>0021 | 0,1 %   |  |  |  |  |  |
| d081  | Störmelderegister 1                              | R   | Zwischenkreisspannung           | 0017h/<br>0016h | 0023/<br>0022 | 0,1 V   |  |  |  |  |  |
| u001  | Stormelderegister                                | R   | Betriebszeit (High Byte)        | 0018h/<br>0017h | 0024/<br>0023 | Stunden |  |  |  |  |  |
|       |                                                  | R   | Betriebszeit (Low Byte)         | 0019h/<br>0018h | 0025/<br>0024 |         |  |  |  |  |  |
|       |                                                  | R   | Netz-Ein Zeit (High Byte)       | 001Ah/<br>0019h | 0026/<br>0025 | Stunden |  |  |  |  |  |
|       |                                                  | R   | Netz-Ein Zeit (Low Byte)        | 001Bh/<br>001Ah | 0027/<br>0026 |         |  |  |  |  |  |

|       | Holding              | , Regi | ster, Gruppe "d" (Monitorfunkt    | ionen)          |               |         |  |  |
|-------|----------------------|--------|-----------------------------------|-----------------|---------------|---------|--|--|
|       |                      |        |                                   | Ne              | Netzwerkdaten |         |  |  |
| FktNr | Funktion             | R/W    | Beschreibung                      | Reg.<br>(hex)   | Reg.<br>(dez) | Res.    |  |  |
|       |                      | R      | Störmelderegister 2: Fehler-Nr.   | 001Ch/<br>001Bh | 0028/<br>0027 |         |  |  |
|       |                      | R      | Ausgangsfrequenz                  | 001Eh/<br>001Dh | 0030/<br>0029 | 0,1 Hz  |  |  |
|       |                      | R      | Motorstrom                        | 0020h/<br>001Fh | 0032/<br>0031 | 0,1 %   |  |  |
| 4000  | Ctärmoldorogistor 2  | R      | Zwischenkreisspannung             | 0021h/<br>0020h | 0033/<br>0032 | 0,1 V   |  |  |
| d082  | Störmelderegister 2  | R      | Betriebszeit (High Byte)          | 0022h/<br>0021h | 0034/<br>0033 | Stunden |  |  |
|       |                      | R      | Betriebszeit (Low Byte)           | 0023h/<br>0022h | 0035/<br>0034 |         |  |  |
|       |                      | R      | Netz-Ein Zeit (High Byte)         | 0024h/<br>0023h | 0036/<br>0035 | Stunden |  |  |
|       |                      | R      | Netz-Ein Zeit (Low Byte)          | 0025h/<br>0024h | 0037/<br>0036 |         |  |  |
|       |                      | R      | Störmelderegister 3: Fehler-Nr.   | 0026h/<br>0025h | 0038/<br>0037 | _       |  |  |
|       |                      | R      | Ausgangsfrequenz                  | 0028h/<br>0027h | 0040/<br>0039 | 0,1 Hz  |  |  |
|       |                      | R      | Motorstrom                        | 002Ah/<br>0029h | 0042/<br>0041 | 0,1 %   |  |  |
| 4000  | Ctärmaldara sistar 2 | R      | Zwischenkreisspannung             | 002Bh/<br>002Ah | 0043/<br>0042 | 0,1 V   |  |  |
| d083  | Störmelderegister 3  | R      | Betriebszeit (High Byte)          | 002Ch/<br>002Bh | 0044/<br>0043 | Stunden |  |  |
|       |                      | R      | Betriebszeit (Low Byte)           | 002Dh/<br>002Ch | 0045/<br>0044 |         |  |  |
|       |                      | R      | Netz-Ein Zeit (High Byte)         | 002Eh/<br>002Dh | 0046/<br>0045 | Stunden |  |  |
|       |                      | R      | Netz-Ein Zeit (Low Byte)          | 002Fh/<br>002Eh | 0047/<br>0046 |         |  |  |
|       | Holdir               | ng-Reg | gister 0030h bis 1000h sind reser | viert           |               |         |  |  |

**Hinweis 1:** Speichern von neuen Daten (für Speicherbeschreibung). Für mehr Informationen, siehe "Speichern von neuen Registerdaten (ENTER-Befehl)".

Die Tabelle zeigt Holding Register der Gruppe "F" (Basisfunktionen).

|                | Holdi                                 | ng Re | gister, Gruppe "F" (Basist                          | unktion         | en)           |              |               |
|----------------|---------------------------------------|-------|-----------------------------------------------------|-----------------|---------------|--------------|---------------|
| Fkt            |                                       |       |                                                     | Ne              | tzwerko       | laten        |               |
| Nr             | Funktion                              | R/W   | Beschreibung                                        | Reg.<br>(hex)   | Reg.<br>(dez) | Bereich      | Grund<br>wert |
| F001           | Anzeige / Eingabe<br>Frequenzsollwert | R/W   | Standard<br>Frequenzsollwertvorgabe<br>0,0 - 400 Hz | h               |               | 0-4000       | 0,1 Hz        |
| F002<br>(high) | 1. Hochlaufzeit *1                    | R/W   | Standard Hochlaufzeit<br>0,01 - 3000 s              | 1014h/<br>1013h | 4116/<br>4115 | 1-<br>300000 | 0,01 s        |
| F002<br>(low)  |                                       | R/W   |                                                     | 1015h/<br>1014h | 4117/<br>4116 |              |               |
| F202<br>(high) | Hochlaufzeit     (2. Parametersatz)   | R/W   | Standard Hochlaufzeit (2. Parametersatz)            | 1501h/<br>1500h | 5377/<br>5376 | 1-<br>300000 | 0,01 s        |
| F202<br>(low)  | · *1                                  | R/W   | 0,01 - 3000 s                                       | 1502h/<br>1501h | 5378/<br>5377 |              |               |
| F003<br>(high) | 1. Runterlaufzeit *1                  | R/W   | Standard Runterlaufzeit 0,01 - 3000 s               | 1016h/<br>1015h | 4118/<br>4117 | 1-<br>300000 | 0,01 s        |
| F003<br>(low)  |                                       | R/W   |                                                     | 1017h/<br>1016h | 4119/<br>4118 |              |               |
| F203<br>(high) | Runterlaufzeit     (2. Parametersatz) | R/W   | Standard Runterlaufzeit (2. Parametersatz)          | 1503h/<br>1502h | 5379/<br>5378 | 1-<br>300000 | 0,01 s        |
| F203<br>(low)  | <sup>*</sup> 1                        | R/W   | 0,01 - 3000 s                                       | 1504h/<br>1503h | 5380/<br>5379 |              |               |
| F004           | Drehrichtung                          | R/W   | 2 Einstellmöglichkeiten:<br>00 Rechts<br>01 Links   | 1018h/<br>1017h | 4120/<br>4219 | 0, 1         | _             |

**Hinweis 1:** Wenn der Wert 10000 (100,0 Sekunden) entspricht, wird die 2. Kommastelle nicht berücksichtigt.

Die Tabelle zeigt Holding Register der Gruppe "A" (Standardfunktionen).

|      | Holding                                                  | g Regi | ster, Gruppe "A" (Standar                                                                                                                           | dfunktio        | nen)          |                   |               |
|------|----------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|-------------------|---------------|
| Fkt  |                                                          |        |                                                                                                                                                     |                 | Netzw         | erkdaten          |               |
| Nr   | Funktion                                                 | R/W    | Beschreibung                                                                                                                                        | Reg.<br>(hex)   | Reg.<br>(dez) | Bereich           | Grund<br>wert |
| A001 | Frequenzsollwert-<br>vorgabe                             | R/W    | 5 Wahlmöglichkeiten:<br>00eingeb. Potentiom.                                                                                                        | 1019h/<br>1018h | 4121/<br>4120 | 0, 1, 2,<br>3, 10 | _             |
| A201 | Frequenzsollwert-<br>vorgabe<br>(2. Parametersatz)       | R/W    | 01Eingang O/OI<br>02F001/A020<br>03RS485 (ModBus)<br>10Log. Verknüpfungen                                                                           | 150Ah/<br>1509h | 5386/<br>5385 | 0, 1, 2,<br>3, 10 | _             |
| A002 | Start/Stop-Vorgabe                                       | R/W    | 3 Wahlmöglichkeiten:<br>01Eingang FW/RV                                                                                                             | 101Ah/<br>1019h | 4122/<br>4221 | 1, 2, 3           | _             |
| A202 | Start/Stop-Vorgabe (2. Parametersatz)                    | R/W    | 02RUN-Taste<br>03RS485 (ModBus)                                                                                                                     | 150Bh/<br>150Ah | 5387/<br>5386 | 1, 2, 3           | _             |
| A003 | Motornennfrequenz<br>/ Eckfrequenz                       | R/W    | Einstellbar von 30 Hz bis max. Frequenz                                                                                                             | 101Bh/<br>101Ah | 4123/<br>4122 | 30-max.<br>Freq.  | 1 Hz          |
| A203 | Motornennfrequenz<br>/ Eckfrequenz<br>(2. Parametersatz) | R/W    |                                                                                                                                                     | 150Ch/<br>150Bh | 5388/<br>5387 | 30-max.<br>Freq.  | 1 Hz          |
| A004 | Maximalfrequenz                                          | R/W    | Einstellbar von<br>Nennfrequenz bis 400 Hz                                                                                                          | 101Ch/<br>101Bh | 4124/<br>4123 | 30-400            | 1 Hz          |
| A204 | Maximalfrequenz (2. Parametersatz)                       | R/W    |                                                                                                                                                     | 150Dh/<br>150Ch | 5389/<br>5388 | 30-400            | 1 Hz          |
| A005 | Umschaltung<br>Sollwerteingänge<br>mit Eingang AT        | R/W    | 4 Wahlmöglichkeiten: 00[O] und [OI] 01[O] und [OI] ([AT] Eingang unberücksichtigt) 02[O] und eingeb. Potentiometer 03[OI] und eingeb. Potentiometer | 101Dh/<br>101Ch | 4125/<br>4124 | 0, 1, 2, 3        | _             |
| A011 | Eingang O-L<br>Frequenz bei Min<br>Sollwert              | R/W    | Unterschreitung min.<br>Sollwert, Verwendung<br>min. Frequenz<br>0,0 - 400,0 Hz                                                                     | 1020h/<br>101Fh | 4128/<br>4127 | 0-4000            | 0,1 Hz        |
| A012 | Eingang O-L<br>Frequenz bei Max<br>Sollwert              | R/W    | Überschreitung max.<br>Sollwert, Verwendung<br>max. Frequenz 0,0 -<br>400,0 Hz                                                                      | 1022h/<br>1021h | 4130/<br>4129 | 0-4000            | 0,1 Hz        |
| A013 | Eingang O-L<br>MinSollwert                               | R/W    | Eingegebener Wert<br>bezieht sich auf min.<br>möglichen Sollwert<br>0 - 100 %                                                                       | 1023h/<br>1022h | 4131/<br>4130 | 0-100             | 1 %           |

#### Holding Register, Gruppe "A" (Standardfunktionen) Netzwerkdaten Fkt.-R/W **Funktion Beschreibung** Grund Reg. Reg. Nr Bereich (hex) (dez) wert A014 1024h/ 4132/ 0-100 1 % Eingang O-L R/W Eingegebener Wert 1023h 4131 Max.-Sollwert bezieht sich auf max. möglichen Sollwert 0 - 100 % 2 Wahlmöglichkeiten: 1025h/ A015 Eingang O-L R/W 4133/ 0, 1 4132 1024h 00..min. Frequenz Startbedingung (A011) 01..0 Hz Filter Analogein-R/W Einstellbereich plus eine 1026h/ 4134/ 1-17 A016 1025h 4133 Einstellung: Abtasgang 01 - 16... Reaktionszeit tung (n = 1-16 Abtastungen)17..16 Abtastungen, plus Totbereich +0,1/-0,2Hz R/W 1029h/ A020 4137/ 0-4000 Basisfrequenz Definition erster 0,1 Hz 1028h 4136 Festfrequenz bei einem Festfrequenzprofil. Frequenz bei Einstellung A001=02 0,0-400,0 Hz A220 R/W Definition erster 150Fh/ 5391/ Basisfrequenz 0-4000 0,1 Hz 150Eh 5390 (2. Parametersatz) Festfrequenz bei einem Festfrequenzprofil. Frequenz bei Einstellung A001=02 (2. Parametersatz) 0,0-400,0 Hz.

|      | Holding                                 | g Regi | ster, Gruppe "A" (Standar                                        | dfunktio        | nen)          |          |               |
|------|-----------------------------------------|--------|------------------------------------------------------------------|-----------------|---------------|----------|---------------|
| Fkt  |                                         |        |                                                                  |                 | Netzw         | erkdaten |               |
| Nr   | Funktion                                | R/W    | Beschreibung                                                     | Reg.<br>(hex)   | Reg.<br>(dez) | Bereich  | Grund<br>wert |
| A021 | 1. Festfrequenz                         | R/W    |                                                                  | 102Bh/<br>102Ah | 4139/<br>4138 | 0-4000   | 0,1 Hz        |
| A022 | 2. Festfrequenz                         | R/W    |                                                                  | 102Dh/<br>102Ch | 4141/<br>4140 |          |               |
| A023 | 3. Festfrequenz                         | R/W    |                                                                  | 102Fh/<br>102Eh | 4143/<br>4142 |          |               |
| A024 | 4. Festfrequenz                         | R/W    |                                                                  | 1031h/<br>1030h | 4145/<br>4144 |          |               |
| A025 | 5. Festfrequenz                         | R/W    |                                                                  | 1033h/<br>1032h | 4147/<br>4146 |          |               |
| A026 | 6. Festfrequenz                         | R/W    |                                                                  | 1035h/<br>1034h | 4149/<br>4148 |          |               |
| A027 | 7. Festfrequenz                         | R/W    | 15 Festfreguenzen                                                | 1037h/<br>1036h | 4151/<br>4150 |          |               |
| A028 | 8. Festfrequenz                         | R/W    | 0,0 - 400 Hz A021= Festfrequenz 1                                | 1039h/<br>1038h | 4153/<br>4152 |          |               |
| A029 | 9. Festfrequenz                         | R/W    | A035 = Festfrequenz 15                                           | 103Bh/<br>103Ah | 4155/<br>4154 |          |               |
| A030 | 10. Festfrequenz                        | R/W    |                                                                  | 103Dh/<br>103Ch | 4157/<br>4156 |          |               |
| A031 | 11. Festfrequenz                        | R/W    |                                                                  | 103Fh1<br>03Eh  | 4159/<br>4158 |          |               |
| A032 | 12. Festfrequenz                        | R/W    |                                                                  | 1041h/<br>1040h | 4161/<br>4160 |          |               |
| A033 | 13. Festfrequenz                        | R/W    |                                                                  | 1043h/<br>1042h | 4163/<br>4162 |          |               |
| A034 | 14. Festfrequenz                        | R/W    |                                                                  | 1045h/<br>1044h | 4165/<br>4164 |          |               |
| A035 | 15. Festfrequenz                        | R/W    |                                                                  | 1047h/<br>1046h | 4167/<br>4166 |          |               |
| A038 | Tipp-Frequenz                           | R/W    | Frequenzeinstellung<br>Tipp-Betrieb<br>0,0 - 9,99 Hz             | 1048h/<br>1047h | 4168/<br>4167 | 0-999    | 0,01 Hz       |
| A039 | Tipp-Frequenz<br>Stop-Modus             | R/W    | Beendigung Tipp-Betrieb:<br>00Freilauf<br>01Rampe<br>02DC-Bremse | 1049h/<br>1048h | 4169/<br>4168 | 0, 1, 2  |               |
| A041 | Boost-Charakteristik                    | R/W    | 2 Wahlmöglichkeiten:<br>00Manueller Boost                        | 104Ah/<br>1049h | 4170/<br>4169 | 0, 1     | _             |
| A241 | Boost-Charakteristik (2. Parametersatz) | R/W    | 01Automatischer Boost                                            | 1510h/<br>150F  | 5392/<br>5391 |          |               |

|      | Holdin                                                         | g Regi | ster, Gruppe "A" (Standar                                                                                                 | dfunktio        | nen)          |                    |               |
|------|----------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|--------------------|---------------|
| Fkt  |                                                                |        |                                                                                                                           |                 | Netzw         | erkdaten           |               |
| Nr   | Funktion                                                       | R/W    | Beschreibung                                                                                                              | Reg.<br>(hex)   | Reg.<br>(dez) | Bereich            | Grund<br>wert |
| A042 | Manueller Boost                                                | R/W    | Erhöhung Startmoment bei U/f-Kurve                                                                                        | 104Bh/<br>104Ah | 4171/<br>4170 | 0-200              | 0,1 %         |
| A242 | Manueller Boost (2. Parametersatz)                             | R/W    | 0,0 - 20,0%                                                                                                               | 1511h/<br>1510h | 5393/<br>5392 |                    |               |
| A043 | Maximaler Boost bei<br>%Eckfrequenz                            | R/W    | Frequenz mit höchster<br>Spannungsanhebung.                                                                               | 104Ch/<br>104Bh | 4172/<br>4171 | 0-500              | 0,1 %         |
| A243 | Maximaler Boost bei<br>%Eckfrequenz<br>(2. Parametersatz)      | R/W    | Eingabebereich von 0-<br>50% der Eckfrequenz<br>0,0 - 50,0%                                                               | 1512h/<br>1511h | 5394/<br>5393 |                    |               |
| A044 | Arbeitsverfahren / U/f-Charakteristik                          | R/W    | 2 verfügbare U/f-<br>Kennlinien:                                                                                          | 104Dh/<br>104Ch | 4173/<br>4172 | 0, 1               | _             |
| A244 | Arbeitsverfahren /<br>U/f-Charakteristik<br>(2. Parametersatz) | R/W    | 00 U/f konstant<br>01 U/f quadratisch                                                                                     | 1513h/<br>1512h | 5395/<br>5394 |                    |               |
| A045 | Ausgangsspannung                                               | R/W    | Einstellbare Ausgangs-<br>spannung                                                                                        | 104Eh/<br>104Dh | 4174/<br>4173 | 20-100             | 1 %           |
| A245 | Ausgangsspannung (2. Parametersatz)                            | R/W    | 20 - 100%                                                                                                                 | 1514h/<br>1513h | 5396/<br>5395 | 20-100             | 1 %           |
| A051 | DC-Bremse intern / aktiv/inaktiv                               | R/W    | 2 Wahlmöglichkeiten:<br>00 inaktiv<br>01 aktiv                                                                            | 1051h/<br>1050h | 4177/<br>4176 | 0, 1               | _             |
| A052 | DC-Bremse /<br>Einschaltfrequenz                               | R/W    | Frequenz, bei der im<br>Runterlauf die Bremse<br>einfällt.<br>Bereich von Startfre-<br>quenz (b082) bis 60 Hz             | 1052h/<br>1051h | 4178/<br>4177 | (b082 x<br>10)-600 | 0,1 Hz        |
| A053 | DC-Bremse /<br>Wartezeit                                       | R/W    | Verzögerung von Ende<br>Rampenführung bis<br>Beginn der DC-Bremse<br>(freier Motorlauf bis<br>Bremsbeginn)<br>0,0 - 5,0 s | 1053h/<br>1052h | 4179/<br>4178 | 0-50               | _             |
| A054 | DC-Bremse /<br>Bremsmoment                                     | R/W    | Einstellbare Höhe Brems-<br>moment<br>0 - 100%                                                                            | 1054h/<br>1053h | 4180/<br>4179 | 0-100              | 1 %           |
| A055 | DC-Bremse /<br>Bremszeit                                       | R/W    | Dauer DC-Bremse<br>0,0 - 60,0 s                                                                                           | 1055h/<br>1054h | 4181/<br>4180 | 0-600              | 0,1 s         |
| A056 | DC-Bremse /<br>Charakteristik                                  | R/W    | 2 Wahlmöglichkeiten:<br>00 Flanke<br>01 Pegel                                                                             | 1056h/<br>1055h | 4182/<br>4181 | 0, 1               | _             |

|      | Holding                                          | g Regi | ster, Gruppe "A" (Standar                                                                                                 | dfunktio        | nen)          |                                              |               |
|------|--------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|----------------------------------------------|---------------|
| Fkt  |                                                  |        |                                                                                                                           |                 | Netzw         | erkdaten                                     |               |
| Nr   | Funktion                                         | R/W    | Beschreibung                                                                                                              | Reg.<br>(hex)   | Reg.<br>(dez) | Bereich                                      | Grund<br>wert |
| A061 | Max. Betriebs-<br>frequenz                       | R/W    | Begrenzung Ausgangs-<br>frequenz unterhalb der                                                                            | 105Ah/<br>1059h | 4186/<br>4185 | (A062 x<br>10) bis                           | 0,1 Hz        |
| A261 | Max. Betriebs-<br>frequenz<br>(2. Parametersatz) | R/W    | Maximalfrequenz (A004). Bereich von min. Betriebsfrequenz (A062) bis Maximalfrequenz (A004). Grenze unwirk- sam bei 0 Hz. | 1517h/<br>1516h | 5399/<br>5398 | (A004 x<br>10),<br>0=inakti<br>v<br>>1=aktiv |               |
| A062 | Min. Betriebs-<br>frequenz                       | R/W    | Begrenzung Ausgangs-<br>frequenz > 0. Bereich von                                                                         | 105Bh/<br>105Ah | 4187/<br>4186 | (b082 x<br>10) bis                           | 0,1 Hz        |
| A262 | Min. Betriebs-<br>frequenz<br>(2. Parametersatz) | R/W    | Startfrequenz (b082) bis max. Betriebsfrequenz (A061). Grenze unwirksam bei 0 Hz.                                         | 1518h/<br>1517h | 5400/<br>5399 | (A061 x<br>10),<br>0=inakti<br>v<br>>1=aktiv |               |
| A063 | Frequenzsprung 1                                 | R/W    | Programmierung von 3<br>Frequenzsprüngen, zur<br>Ausblendung von<br>Resonanzen<br>0,0 - 400,0 Hz                          | 105Dh/<br>105Ch | 4189/<br>4188 | 0-4000                                       | 0,1 Hz        |
| A064 | Frequenzsprung 1 /<br>Sprungweite                | R/W    | Bestimmung Sprung-<br>weite der Frequenz-<br>sprünge<br>0,0 - 10,0 Hz                                                     | 105Eh/<br>105Dh | 4190/<br>4189 | 0-100                                        | 0,1 Hz        |
| A065 | Frequenzsprung 2                                 | R/W    | Programmierung von 3<br>Frequenzsprüngen, zur<br>Ausblendung von<br>Resonanzen<br>0,0 - 400,0 Hz                          | 1060h/<br>105Fh | 4192/<br>4191 | 0-4000                                       | 0,1 Hz        |
| A066 | Frequenzsprung 2 /<br>Sprungweite                | R/W    | Bestimmung Sprung-<br>weite der Frequenz-<br>sprünge<br>0,0 - 10,0 Hz                                                     | 1061h/<br>1060h | 4193/<br>4192 | 0-100                                        | 0,1 Hz        |
| A067 | Frequenzsprung 3                                 | R/W    | Programmierung von 3<br>Frequenzsprüngen, zur<br>Ausblendung von<br>Resonanzen<br>0,0 - 400,0 Hz                          | 1063h/<br>1062h | 4195/<br>4194 | 0-4000                                       | 0,1 Hz        |
| A068 | Frequenzsprung 3 /<br>Sprungweite                | R/W    | Bestimmung Sprung-<br>weite der Frequenz-<br>sprünge<br>0,0 - 10,0 Hz                                                     | 1064h/<br>1063h | 4196/<br>4195 | 0-100                                        | 0,1 Hz        |
| A071 | PID-Regler aktiv / inaktiv                       | R/W    | Aktivierung PID-Funktionen: 00PID-Regler inaktiv 01PID-Regler aktiv                                                       | 1068h/<br>1067h | 4200/<br>4199 | 0, 1                                         |               |

|                | Holdin                                  | g Regi | ster, Gruppe "A" (Standar                                                                                  | dfunktio        | nen)          |                    |               |
|----------------|-----------------------------------------|--------|------------------------------------------------------------------------------------------------------------|-----------------|---------------|--------------------|---------------|
| Fkt            |                                         |        |                                                                                                            |                 | Netzw         | erkdaten           |               |
| Nr             | Funktion                                | R/W    | Beschreibung                                                                                               | Reg.<br>(hex)   | Reg.<br>(dez) | Bereich            | Grund<br>wert |
| A072           | P-Anteil                                | R/W    | Proportional-Verstärkung 0,2 - 5,0                                                                         | 1069h/<br>1068h | 4201/<br>4200 | 2-50               | 0,1           |
| A073           | I-Anteil                                | R/W    | Integral-Zeitkonstante<br>0,0 - 150 Sekunden                                                               | 106Ah/<br>1069h | 4202/<br>4201 | 0-1500             | 0,1 s         |
| A074           | D-Anteil                                | R/W    | Differential-Zeitkonstante<br>0,0 - 100 Sekunden                                                           | 106Bh/<br>106Ah | 4203/<br>4202 | 0-1000             | 0,1 s         |
| A075           | Anzeigefaktor                           | R/W    | Istwertanzeige, Multipli-<br>kation eines Faktors zur<br>Anzeige prozeßrichtiger<br>Größen<br>0,01 - 99,99 | 106Ch/<br>106Bh | 4204/<br>4203 | 1-9999             | 0,01          |
| A076           | Eingang<br>Istwertsignal                | R/W    | Wahl Istwerteingang:<br>00 Eingang [OI]<br>01 Eingang[O]<br>02 Netzwerk<br>10 Log. Verknüpfungen           | 106Dh/<br>106Ch | 4205/<br>4204 | 0, 1, 2, 3         | _             |
| A077           | Invertierung<br>PID-Regelung            | R/W    | 2 Auswahlmöglichkeiten:<br>00 SW - IW<br>01 (SW - IW)                                                      | 106Eh/<br>106Dh | 4206/<br>4205 | 0, 1               | _             |
| A078           | Ausgangs-<br>begrenzung<br>PID-Regelung | R/W    | Prozentuale Begrenzung<br>Reglerausgang<br>0,0 - 100,0%                                                    | 106Fh/<br>106Eh | 4207/<br>4206 | 0-1000             | 0,1 %         |
| A081           | AVR-Funktion /<br>Charakteristik        | R/W    | Automatische Spannungsregulierung: 00 AVR aktiv 01 AVR inaktiv 02 AVR nicht aktiv im Runterlauf            | 1070h/<br>106Fh | 4208/<br>4207 | 0, 1, 2            | _             |
| A082           | Motorspannung /<br>Netzspannung         | R/W    | 200V-Umrichter:200215220240 400V-Umrichter:380400415440460480                                              | 1071h/<br>1070h | 4209/<br>4208 | 0-5                | _             |
| A092<br>(high) | 2. Hochlaufzeit                         | R/W    | Hochlaufzeit für     Abschnitt der Beschleunigung                                                          | 1074h/<br>1073h | 4212/<br>4211 | 1-<br>300000<br>*1 | 0,1 s         |
| A092<br>(low)  |                                         | R/W    | 0,01 - 3000 s                                                                                              | 1075h/<br>1074h | 4213/<br>4212 | '                  |               |

|                | Holdin                                                           | g Regi | ster, Gruppe "A" (Standar                                                           | dfunktio        | nen)          |                    |               |
|----------------|------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------|-----------------|---------------|--------------------|---------------|
| Fl-4           |                                                                  |        |                                                                                     |                 | Netzw         | erkdaten           |               |
| Fkt<br>Nr      | Funktion                                                         | R/W    | Beschreibung                                                                        | Reg.<br>(hex)   | Reg.<br>(dez) | Bereich            | Grund<br>wert |
| A292<br>(high) | Hochlaufzeit     (2. Parametersatz)                              | R/W    | 2. Hochlaufzeit für<br>Abschnitt der Beschleuni-                                    | h               |               | 1-<br>300000<br>*1 | 0,1 s         |
| A292<br>(low)  |                                                                  | R/W    | gung<br>(2. Parametersatz)<br>0,01 - 3000 s                                         | 1519h/<br>1518h | 5401/<br>5400 | 1                  |               |
| A093<br>(high) | 2. Runterlaufzeit                                                | R/W    | 2. Runterlaufzeit für<br>Abschnitt der Verzöge-                                     | 1076h/<br>1075h | 4214/<br>4213 | 1-<br>300000       | 0,1 s         |
| A093<br>(low)  |                                                                  | R/W    | rung<br>  0,01 - 3000 s                                                             | 1077h/<br>1076h | 4215/<br>4214 | *1                 |               |
| A293<br>(high) | Runterlaufzeit     (2. Parametersatz)                            | R/W    | 2. Runterlaufzeit für<br>Abschnitt der Verzöge-                                     | 151Ah/<br>1519h | 5402/<br>5401 | 1-<br>300000       | 0,1 s         |
| A293<br>(low)  |                                                                  | R/W    | rung<br>(2. Parametersatz)<br>0,01 - 3000 s                                         | 151Bh/<br>151Ah | 5403/<br>5402 | *1                 |               |
| A094           | Umschalten von<br>1. Rampe auf<br>2. Rampe                       | R/W    | 2 Auswahlmöglichkeiten<br>zur Umschaltung 1. auf<br>2. Rampe:                       | 1078h/<br>1077h | 4216/<br>4215 | 0, 1               | _             |
| A294           | Umschalten von<br>1. Rampe auf<br>2. Rampe<br>(2. Parametersatz) | R/W    | 00Eingang 2CH<br>01Umschaltfrequenz<br>(A95/A96)                                    | 151Ch/<br>151Bh | 5404/<br>5403 |                    |               |
| A095           | Umschaltfrequenz<br>Hochlaufzeit                                 | R/W    | Umschaltung 1. und 2.<br>Hochlaufzeit                                               | 107Ah/<br>1079h | 4218/<br>4217 | 0-4000             | 0,1 Hz        |
| A295           | Umschaltfrequenz<br>Hochlaufzeit<br>(2. Parametersatz)           | R/W    | 0,0 - 400,0 Hz                                                                      | 151Eh/<br>151Dh | 5406/<br>5405 |                    |               |
| A096           | Umschaltfrequenz<br>Runterlaufzeit                               | R/W    | Umschaltung 1. und 2.<br>Runterlaufzeit                                             | 107Ch/<br>107Bh | 4220/<br>4219 | 0-4000             | 0,1 Hz        |
| A296           | Umschaltfrequenz<br>Runterlaufzeit<br>(2. Parametersatz)         | R/W    | 0,0 - 400,0 Hz                                                                      | 1520h/<br>151Fh | 5408/<br>5407 |                    |               |
| A097           | Hochlauf-<br>charakteristik                                      | R/W    | Kurvenform 1. und 2.<br>Hochlaufzeit:<br>00linear<br>01S-Kurve                      | 107Dh/<br>107Ch | 4221/<br>4220 | 0, 1               | _             |
| A098           | Runterlauf-<br>charakteristik                                    | R/W    | Kurvenform 1. und 2.<br>Runterlaufzeit:<br>00linear<br>01S-Kurve                    | 107Eh/<br>107Dh | 4222/<br>4221 | 0, 1               | _             |
| A101           | Eingang [OI]–[L]<br>Frequenz bei<br>Min Sollwert                 | R/W    | Unterschreitung min.<br>Sollwert, Verwendung der<br>min. Frequenz<br>0,0 - 400,0 Hz | 1080h/<br>107Fh | 4224/<br>4223 | 0-4000             | 0,1 Hz        |

|      | Holding Register, Gruppe "A" (Standardfunktionen) |     |                                                                                                                                                                  |                 |               |          |               |  |  |
|------|---------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|----------|---------------|--|--|
| Fkt  |                                                   |     |                                                                                                                                                                  |                 | Netzw         | erkdaten |               |  |  |
| Nr   | Funktion                                          | R/W | Beschreibung                                                                                                                                                     | Reg.<br>(hex)   | Reg.<br>(dez) | Bereich  | Grund<br>wert |  |  |
| A102 | Eingang [OI]–[L]<br>Frequenz bei Max<br>Sollwert  | R/W | Überschreitung max.<br>Sollwert, Verwendung der<br>max. Frequenz<br>0,0 - 400,0 Hz                                                                               | 1082h/<br>1081h | 4226/<br>4225 | 0-4000   | 0,1 Hz        |  |  |
| A103 | Eingang [OI]–[L]<br>MinSollwert                   | R/W | Werteingabe bezieht sich<br>auf max. möglichen<br>Sollwert<br>0 - 100 %                                                                                          | 1083h/<br>1082h | 4227/<br>4226 | 0-100    | 1 %           |  |  |
| A104 | Eingang [OI]–[L]<br>MaxSollwert                   | R/W | Werteingabe bezieht sich<br>auf max. möglichen<br>Sollwert<br>0 - 100 %                                                                                          | 1084h/<br>1083h | 4228/<br>4227 | 0-100    | 1 %           |  |  |
| A105 | Eingang [OI]–[L]<br>Startbedingung                | R/W | 2 Auswahlmöglichkeiten:<br>00 min. Frequenz<br>(A101)<br>01 0 Hz                                                                                                 | 1085h/<br>1084h | 4229/<br>4228 | 0, 1     | _             |  |  |
| A141 | Rechenfunktion<br>(Variable A)                    | R/W | 5 Wahlmöglichkeiten:<br>00 Bedieneinheit<br>01 eingeb. Potentiome-<br>ter<br>02 [O] Spannungsein-<br>gang<br>03 [OI] Stromeingang<br>04 Netzwerkvariable         | 108Eh/<br>108Dh | 4238/<br>4237 | 0-4      | _             |  |  |
| A142 | Rechenfunktion<br>(Variable B)                    | R/W | 5 Wahlmöglichkeiten:<br>00 Bedieneinheit<br>01 eingeb. Potentiome-<br>ter<br>02 [O] Spannungsein-<br>gang<br>03 [OI] Stromeingang<br>04 Netzwerkvariable         | 108Fh/<br>108Eh | 4239/<br>4238 | 0-4      | _             |  |  |
| A143 | Rechenfunktion                                    | R/W | Berechnung eingegebener Werte A (A141) und B (A142): 00 ADD (A + B) 01 SUB (A - B) ACHTUNG!!! Bei negativem Ergebnis erfolgt Drehrichtungs-umkehr 02 MUL (A x B) | 1090h/<br>108Ah | 4240/<br>4239 | 0, 1, 2  | _             |  |  |
| A145 | Offset<br>Frequenzaddition                        | R/W | Offset zur Addition der<br>Ausgangsfrequenz<br>0,0 - 400,0 Hz                                                                                                    | 1091h/<br>1090h | 4241/<br>4240 | 0-4000   | 0,1 Hz        |  |  |

|      | Holding Register, Gruppe "A" (Standardfunktionen)  |     |                                                                                                                                                                                     |                 |               |          |               |  |  |
|------|----------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|----------|---------------|--|--|
| Fkt  |                                                    |     |                                                                                                                                                                                     |                 | Netzw         | erkdaten |               |  |  |
| Nr   | Funktion                                           | R/W | Beschreibung                                                                                                                                                                        | Reg.<br>(hex)   | Reg.<br>(dez) | Bereich  | Grund<br>wert |  |  |
| A146 | Frequenzaddition /<br>Frequenzsubtrak-<br>tion     | R/W | 2 Wahlmöglichkeiten: 00Plus (addiert A145 zur Ausgangsfrequenz) 01Minus (subtrahiert A145 von der Ausgangsfrequenz) ACHTUNG!!! Bei negativem Ergebnis erfolgt Drehrichtungs- umkehr | 1093h/<br>1092h | 4243/<br>4242 | 0, 1     |               |  |  |
| A151 | Int. Potentiometer<br>Frequenz bei<br>Min Sollwert | R/W | Unterschreitung min.<br>Sollwert, Verwendung der<br>min. Frequenz<br>0,0 - 400,0 Hz                                                                                                 | 1095h/<br>1094h | 4245/<br>4244 | 0-4000   | 0,1 Hz        |  |  |
| A152 | Int. Potentiometer<br>Frequenz bei Max<br>Sollwert | R/W | Überschreitung max.<br>Sollwert, Verwendung der<br>max. Frequenz<br>0,0 - 400,0 Hz                                                                                                  | 1097h/<br>1096h | 4247/<br>4246 | 0-4000   | 0,1 Hz        |  |  |
| A153 | Int. Potentiometer<br>MinSollwert                  | R/W | Werteingabe bezieht sich<br>auf max. möglichen<br>Sollwert<br>0 - 100 %                                                                                                             | 1098h/<br>1097h | 4248/<br>4247 | 0-100    | 1 %           |  |  |
| A154 | Int. Potentiometer<br>MaxSollwert                  | R/W | Werteingabe bezieht sich<br>auf max. möglichen<br>Sollwert<br>0 - 100 %                                                                                                             | 1099h/<br>1098h | 4249/<br>4248 | 0-100    | 1 %           |  |  |
| A155 | Int. Potentiometer<br>Startbedingung               | R/W | 2 Auswahlmöglichkeiten:<br>00min. Frequenz<br>(A101)<br>010 Hz                                                                                                                      | 109Ah/<br>1099h | 4250/<br>4249 | 0, 1     | _             |  |  |

**Hinweis 1:** Wenn der Wert 10000 (100,0 Sekunden) entspricht, wird die 2. Kommastelle nicht berücksichtigt (bei A092/A292 und A093/A293).

Die Tabelle zeigt Holding Register der Gruppe "b" (Feinabstimmungsfunktionen).

|           | Holding Register, Gruppe "b" (Feinabstimmungsfunktionen)                |     |                                                                                                                                                                                                             |                 |               |                |               |  |  |  |
|-----------|-------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|----------------|---------------|--|--|--|
| Elet      |                                                                         |     |                                                                                                                                                                                                             |                 | Netzw         | erkdaten       |               |  |  |  |
| Fkt<br>Nr | Funktion                                                                | R/W | Beschreibung                                                                                                                                                                                                | Reg.<br>(hex)   | Reg.<br>(dez) | Bereich        | Grund<br>wert |  |  |  |
| b001      | Wiederanlaufmodus                                                       | R/W | Wiederanlauf-<br>möglichkeiten:<br>00 Störmeldung<br>01 0Hz-Start<br>02 Synchronisierung<br>03 Synchronisie-<br>rung+Stop                                                                                   | 10A5h/<br>10A4h | 4261/<br>4260 | 0, 1, 2, 3     | _             |  |  |  |
| b002      | Zulässige<br>Netzausfallzeit                                            | R/W | Zulässige Netzausfallzeit,<br>ohne Auslösen der Störmel-<br>dung Unterspannung. Bei<br>Netzausfallzeit länger als<br>die hier programmierte Zeit<br>geht der Frequenzumrichter<br>auf Störung<br>0,3 - 25 s | 10A6h/<br>10A5h | 4262/<br>4261 | 3-250          | 0,1 s         |  |  |  |
| b003      | Wartezeit vor<br>Wiederanlauf                                           | R/W | Wartezeit nach Störmeldung vor Aktivierung autom. Wiederanlauf 0,3 - 100 s                                                                                                                                  | 10A7h/<br>10A6h | 4263/<br>4262 | 3-1000         | 0,1 s         |  |  |  |
| b004      | Kurzzeitiger<br>Netzausfall / Unter-<br>spannung Stillstand             | R/W | 2 Wahlmöglichkeiten:<br>00 keine Störmeldung<br>01 Störmeldung                                                                                                                                              | 10A8h/<br>10A7h | 4264/<br>4263 | 0, 1           | _             |  |  |  |
| b005      | Kurzzeitiger<br>Netzausfall / Unter-<br>spannung                        | R/W | 2 Wahlmöglichkeiten:<br>0016 Versuche<br>01unbegrenzt                                                                                                                                                       | 10A9h/<br>10A8h | 4265/<br>4264 | 0, 1           | _             |  |  |  |
| b012      | Elektronischer Motor-<br>schutz / Einstellwert                          | R/W | 0,2 - 1,2 x FU-Nennstrom<br>(20 - 120 %)                                                                                                                                                                    | 10ADh/<br>10ACh | 4269/<br>4268 | 2000-<br>12000 | 0,01%         |  |  |  |
| b212      | Elektronischer Motor-<br>schutz / Einstellwert<br>(2. Parametersatz)    | R/W |                                                                                                                                                                                                             | 1526h/<br>1525h | 5414/<br>5413 |                |               |  |  |  |
| b013      | Elektronischer Motor-<br>schutz / Charakteris-<br>tik                   | R/W | 2 Kurven zur Wahl: *1<br>00 Quadratisch 1<br>01 Konstant                                                                                                                                                    | 10AEh/<br>10ADh | 4270/<br>4269 | 0, 1, 2        | _             |  |  |  |
| b213      | Elektronischer<br>Motorschutz /<br>Charakteristik<br>(2. Parametersatz) | R/W | 02Quadratisch 2<br>(stärkere Kurvenkrüm-<br>mung)                                                                                                                                                           | 1527h/<br>1526h | 5415/<br>5414 |                |               |  |  |  |
| b021      | Stromgrenze<br>Charakteristik                                           | R/W | Betriebsartenauswahl bei<br>Überlast:                                                                                                                                                                       | 10B5h/<br>10B4h | 4277/<br>4276 | 0, 1, 2        |               |  |  |  |
| b221      | Stromgrenze<br>Charakteristik<br>(2. Parametersatz)                     | R/W | 00 inaktiv<br>01 aktiv<br>02 aktiv, konst. Geschw.                                                                                                                                                          | 1528h/<br>1527h | 5416/<br>5415 | 0, 1, 2        | _             |  |  |  |

#### Holding Register, Gruppe "b" (Feinabstimmungsfunktionen) Netzwerkdaten Fkt.-R/W **Funktion** Beschreibung Reg. Rea. Grund Nr **Bereich** (hex) (dez) wert Überlastbegrenzung, 10B6h/ 4278/ b022 Stromgrenze R/W 2000-0.01% 10B5h 4277 zwischen 20% und 150% Einstellwert 15000 des Umrichternenn-R/W 1529h/ 5417/ 2000b222 Stromgrenze 0,01% stroms. Auflösung 1 % 1528h 5416 Einstellwert 15000 des Nennstroms (2. Parametersatz) R/W 10B7h/ 4279/ 1-300 b023 Stromgrenze Frequenzreduzierung in 0,1s10B6h 4278 Zeitkonstante der vorgegebenen Zeit bei Erreichen der Stromb223 R/W 152Ah/ 5418/ 1-300 0.1 sStromgrenze arenze 1529h 5417 Zeitkonstante Bereich 0.1 - 30.0 (2. Parametersatz) (Auflösung 0,1) 4283/ R/W 10BBh/ 0, 1 b028 Anwahl Strom-Anwahl der Stromgrenze 10BAh 4282 grenze 00 .. Parameter b022 / Einstellwert b222 01 .. Analogeingang [O]-R/W 152Bh/ 5419/ b228 Anwahl Strom-0.1 [L] 152A 5418 arenze Einstellwert (2. Parametersatz) 10BCh/ 4284/ b031 Parametersicherung R/W Vermeidung Parameter-0.1.2.3 10BBh 4283 änderungen: 00 .. Eingang SFT Parameter + Sollwert 01 .. Eingang SFT nur Parameter 02 .. Parameter + Sollwert 03 ..nur Parameter R/W Abgleich Analog-10CFh/ 4303/ 0-255 b080 Abgleich Analog-10CEh 4302 Ausgang Klemme [AM] Ausgang [AM] 0 - 255b082 Startfrequenz R/W Einstellung Startfrequenz 10D1h/ 4305/ 5-99 0.1 Hz 10D0h 4304 des Umrichterausgangs 0,5 - 9,9 Hz b083 R/W 10D2h/ 4306/ 20-140 0,1 Hz Taktfrequenz Einstellung Taktfrequenz 10D1h 4305 (interne Schaltfrequenz) 2,0 - 14,0 kHz b084 R/W Auswahl Werkseinstel-10D3h/ 4307/ 0, 1, 2 Werkseinstellung / 10D2h 4306 Initialisierung lung / Initialisierung: 00 ..Störmeldungen löschen 01 .. Werkseinstellung 02 ..Störmeldungen löschen + Werkseinstellung

|      | Holding Register, Gruppe "b" (Feinabstimmungsfunktionen)                 |     |                                                                                                                                                                                                                                                                      |                 |               |         |               |  |  |
|------|--------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|---------|---------------|--|--|
| Fkt  |                                                                          |     |                                                                                                                                                                                                                                                                      | Netzwerkdaten   |               |         |               |  |  |
| Nr   | Funktion                                                                 | R/W | Beschreibung                                                                                                                                                                                                                                                         | Reg.<br>(hex)   | Reg.<br>(dez) | Bereich | Grund<br>wert |  |  |
| b085 | Werkseinstellungs-<br>parameter / Länder-<br>code (nicht über<br>ModBus) | _   | Auswahl länderspezifi-<br>scher Parameter.<br>Hinweis: Keine Ausfüh-<br>rung über Netzwerk                                                                                                                                                                           | 10D4h/<br>10D3h | 4308/<br>4307 | _       | _             |  |  |
| b086 | Frequenzanzeige-<br>faktor                                               | R/W | Eingabe Frequenzfaktor<br>für Anzeige d007<br>0,1 - 99,9                                                                                                                                                                                                             | 10D5h/<br>10D4h | 4309/<br>4308 | 1-999   | 0,1           |  |  |
| b087 | Stop-Taste bei Start/<br>Stop über Eingang<br>FW/RV                      | R/W | Sperrung Stop-Taste:<br>00 Taste aktiv<br>01 Taste inaktiv                                                                                                                                                                                                           | 10D6h/<br>10D5h | 4310/<br>4309 | 0, 1    | _             |  |  |
| b088 | Motorsynchronisa-<br>tion                                                | R/W | Wegnahme Startbedingung freier Motorauslauf (FRS): 000Hz-Start 01Synchronisierung                                                                                                                                                                                    | 10D7h/<br>10D6h | 4311/<br>4310 | 0, 1    |               |  |  |
| b089 | Anzeigenauswahl<br>für einen vernetzten<br>Umrichter                     | R/W | Auswahl der Parameter die bei einem vernetzten Umrichter angezeigt werden sollen. 7 Wahlmöglichkeiten: 01 Ausgangsfrequenz 02 Motorstrom 03 Drehrichtung 04 PID-Regler Istwert 05 Status digitale Eingänge 06 Status digitale Ausgänge 07 skalierte Ausgangsfrequenz | 10D8h/<br>10D7h | 4312/<br>4311 | 1-7     |               |  |  |
| b091 | Stop-Modus                                                               | R/W | Stop-Befehl Runterlauf-<br>verhalten:<br>00 Rampe<br>01 freier Auslauf (FRS)                                                                                                                                                                                         | 10DAh/<br>10D9h | 4314/<br>4313 | 0, 1    |               |  |  |
| b130 | Runterlaufzeit<br>Zwischenkreis-<br>überspannung                         | R/W | Verlängerung Runterlaufzeit Zwischenkreisüberspannung: 00 inaktiv 01 aktiv                                                                                                                                                                                           | 10F5h/<br>10F4h | 4341/<br>4340 | 0, 1    | _             |  |  |

|      | Holding Register, Gruppe "b" (Feinabstimmungsfunktionen)     |     |                                                                                                                                                                                                       |                 |               |                    |               |  |  |
|------|--------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|--------------------|---------------|--|--|
| Fkt  |                                                              |     |                                                                                                                                                                                                       | Netzwerkdaten   |               |                    |               |  |  |
| Nr   | Funktion                                                     | R/W | Beschreibung                                                                                                                                                                                          | Reg.<br>(hex)   | Reg.<br>(dez) | Bereich            | Grund<br>wert |  |  |
| b131 | Einstellwert<br>Zwischenkreis-<br>überspannung               | R/W | Schwellwert für die Zwischenkreisüberspannung. Ist die Zwischenkreisspannung über dem Grenzwert, beendet der Umrichter die Verzögerung bis die Spannung den eingestellten Wert wieder unterschreitet. | 10F6h/<br>10F5h | 4342/<br>4341 | 330-390<br>660-780 | 1V            |  |  |
| b150 | Temperaturabhän-<br>gige Taktfrequenz<br>(nicht über ModBus) | _   | Automatische Reduzie-<br>rung der Taktfrequenz bei<br>erhöhter Umgebungstem-<br>peratur:<br>00inaktiv<br>01aktiv                                                                                      | 10F8h/<br>10F7h | 4344/<br>4343 | 0, 1               | _             |  |  |
| b151 | Quick-Start-<br>Funktion                                     | _   | Anwahl der Quick-Start-<br>Funktion:<br>00inaktiv<br>01aktiv                                                                                                                                          | 10F9h/<br>10F8h | 4345/<br>4344 | 0, 1               | _             |  |  |

Hinweis 1: Angenommener Nennstrom von 10000 (für b013/b213).

Die Tabelle zeigt Holding Register der Gruppe "C" (Steuerfunktionen)  $\boldsymbol{I}$ 

|      | Holding Register, Gruppe "C" (Steuerfunktionen) |     |                                                                      |                 |               |                                                                             |               |  |  |  |
|------|-------------------------------------------------|-----|----------------------------------------------------------------------|-----------------|---------------|-----------------------------------------------------------------------------|---------------|--|--|--|
| Fkt  |                                                 |     |                                                                      | Netzwerkdaten   |               |                                                                             |               |  |  |  |
| Nr   | Funktion                                        | R/W | Beschreibung                                                         | Reg.<br>(hex)   | Reg.<br>(dez) | Bereich                                                                     | Grund<br>wert |  |  |  |
| C001 | Digital-Eingang 1                               | R/W |                                                                      | 1103h/<br>1102h | 4355/<br>4354 | 0, 1, 2,<br>3, 4, 5,<br>6, 7, 8,<br>9, 11,<br>12, 13,<br>15, 16,<br>18, 19, | _             |  |  |  |
| C201 | Digital-Eingang 1 (2. Parametersatz)            | R/W |                                                                      | 1531h/<br>1530h | 5425/<br>5424 |                                                                             |               |  |  |  |
| C002 | Digital-Eingang 2                               | R/W |                                                                      | 1104h/<br>1103h | 4356/<br>4355 |                                                                             |               |  |  |  |
| C202 | Digital-Eingang 2 (2. Parametersatz)            | R/W |                                                                      | 1532h/<br>1531h | 5426/<br>5425 | 20, 21,<br>22, 23,<br>24, 27,                                               |               |  |  |  |
| C003 | Digital-Eingang 3                               | R/W | Siehe Kapitel "Konfigura-                                            | 1105h/<br>1104h | 4357/<br>4356 | 28, 29,<br>31, 50,                                                          |               |  |  |  |
| C203 | Digital-Eingang 3<br>(2. Parametersatz)         | R/W | tion Eingangsklemmen"<br>auf Seite 3–43                              | 1533h/<br>1532h | 5427/<br>5426 | 51, 52,<br>53, 255                                                          |               |  |  |  |
| C004 | Digital-Eingang 4                               | R/W |                                                                      | 1106h/<br>1105h | 4358/<br>4357 |                                                                             |               |  |  |  |
| C204 | Digital-Eingang 4<br>(2. Parametersatz)         | R/W |                                                                      | 1534h/<br>1533h | 5428/<br>5427 |                                                                             |               |  |  |  |
| C005 | Digital-Eingang 5                               | R/W |                                                                      | 1107h/<br>1106h | 4359/<br>4358 |                                                                             |               |  |  |  |
| C205 | Digital-Eingang 5 (2. Parametersatz)            | R/W |                                                                      | 1535h/<br>1534h | 5429/<br>5428 |                                                                             |               |  |  |  |
| C011 | DigEingang 1 S/Ö                                | R/W | 2 Wahlmöglichkeiten:<br>00 Schließer [NO]                            | 110Bh/<br>110Ah | 4363/<br>4362 | 0, 1                                                                        | _             |  |  |  |
| C012 | DigEingang 2 S/Ö                                | R/W | 01 Öffner [NC]                                                       | 110Ch/<br>110Bh | 4364/<br>4363 | 0, 1                                                                        | _             |  |  |  |
| C013 | DigEingang 3 S/Ö                                | R/W |                                                                      | 110Dh/<br>110Ch | 4365/<br>4364 | 0, 1                                                                        | _             |  |  |  |
| C014 | DigEingang 4 S/Ö                                | R/W |                                                                      | 110Eh/<br>110Dh | 4366/<br>4365 | 0, 1                                                                        | _             |  |  |  |
| C015 | DigEingang 5 S/Ö                                | R/W |                                                                      | 110Fh/<br>110Eh | 4367/<br>4366 | 0, 1                                                                        | _             |  |  |  |
| C021 | Digital-Ausgang 11                              | R/W |                                                                      | 1114h/<br>1113h | 4372/<br>4371 | 0, 1, 2,                                                                    |               |  |  |  |
| C022 | Digital-Ausgang 12                              | R/W | Siehe Kapitel "Konfigura-<br>tion Ausgangsklemmen"<br>auf Seite 3–48 | 1115h/<br>1114h | 4373/<br>4372 | 3, 4, 5,<br>6, 7, 8,                                                        |               |  |  |  |
| C026 | Relais-Ausgang<br>AL0-AL1-AL2                   | R/W | dui Seite S-40                                                       | 1119h/<br>1118h | 4377/<br>4376 | 9, 10                                                                       |               |  |  |  |
| C028 | Analog-Ausgang<br>AM                            | R/W | 2 Ausgabemöglichkeiten:<br>00 Frequenzistwert<br>01 Motorstrom       | 111Bh/<br>111Ah | 4379/<br>4378 | 0, 1                                                                        | _             |  |  |  |

#### Holding Register, Gruppe "C" (Steuerfunktionen) Netzwerkdaten Fkt.-R/W **Funktion** Beschreibung Reg. Rea. Grund Nr **Bereich** (hex) (dez) wert Digital-Ausgang 11 4381/ C031 R/W 2 Wahlmöglichkeiten: 111Dh/ 0, 1 Schließer / Öffner 111Ch 4380 00 ..Schließer (NO) 01..Öffner (NC) 2 Wahlmöglichkeiten: C032 Digital-Ausgang 12 R/W 111Eh/ 4382/ 0. 1 111Dh 4381 Schließer 00 .. Schließer (NO) 01 .. Schließer (NO) Störmelderelais R/W 2 Wahlmöglichkeiten: 1122h/ C036 4370/ 0.1 1121h 4369 AL0-AL2 00 ..Schließer (NO) Schließer / Öffner 01 ..Öffner (NC) 1124h/ 4388/ C041 Überlast-Alarm R/W Einstellung Überlast-0-20000 0.01 % 1123h 4387 schwelle zwischen 0 und Schwelle (OL) 200% C241 Überlast-Alarm R/W 1539h/ 5433/ 0-20000 0,01 % (0 - 2 x FU-Nennstrom) 1538h 5432 Schwelle (OL) (2. Parametersatz) C042 R/W 1126h/ 4390/ 0-4000 0,1 Hz Frequenz Schaltet einen Ausgang 1125h 4389 überschritten im im Hochlauf bei \*1 Frequenzüberschreitung Hochlauf (FA2, FA3) 0,0 - 400,0 Hz 1128h/ C043 Frequenz unter-R/W Schaltet einen Ausgang 4392/ 0-4000 0,1 Hz 1127h 4391 schritten im Runterim Runterlauf bei lauf (FA2, FA3) Frequenzunterschreitung 0,0 - 400,0 Hz R/W C044 PID-Regler Schaltet einen Ausgang 1129h/ 4393/ 0-1000 0,1 % 1128h 4392 Abweichung bei Überschreiten der programmierten Soll-Ist-Differenz 0,0 - 100%, Auflösung 0,1% C052 PID-Regler / R/W Ausschalten PID-Regler 112Eh/ 4398/ 0-1000 0.1 % 112Dh 4397 Obere Istwertbei Istwertüberschreitung begrenzung 0.0 - 100.0% 112Fh/ 4399/ C053 PID-Regler / R/W Einschalten PID-Regler 0-1000 0,1 % 112Eh 4398 bei Istwertunterschrei-Untere Istwertbegrenzung tuna 0,0 - 100,0%

|      | Holding Register, Gruppe "C" (Steuerfunktionen) |     |                                                                                                                                     |                 |               |          |               |  |  |  |
|------|-------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|----------|---------------|--|--|--|
| Fkt  |                                                 |     |                                                                                                                                     |                 | Netzw         | erkdaten |               |  |  |  |
| Nr   | Funktion                                        | R/W | Beschreibung                                                                                                                        | Reg.<br>(hex)   | Reg.<br>(dez) | Bereich  | Grund<br>wert |  |  |  |
| C071 | Baudrate                                        | _   |                                                                                                                                     | 1138h/<br>1137h | 4408/<br>4407 | _        | _             |  |  |  |
| C072 | Adresse                                         | _   |                                                                                                                                     | 1139h/<br>1138h | 4409/<br>4408 | _        | _             |  |  |  |
| C074 | Parität                                         | _   | lungen sind nicht über<br>ModBus zu verändern,                                                                                      | 113Bh/<br>113Ah | 4411/<br>4410 | _        | _             |  |  |  |
| C075 | Stopbits                                        | _   | sondern nur über die<br>Tastatur oder Bedienein-<br>heit. Siehe Kapitel                                                             | 113Ch/<br>113Bh | 4412/<br>4411 | _        | _             |  |  |  |
| C076 | Übertragungsfehler                              | _   | "Einstellungen Netzwerk-<br>kommunikation" auf                                                                                      | 113Dh/<br>113Ch | 4413/<br>4412 | _        | _             |  |  |  |
| C077 | Unterbrechung<br>Übertragungsfehler             |     | Seite 3–52.                                                                                                                         | 113Eh/<br>113Dh | 4414/<br>4413 | _        | _             |  |  |  |
| C078 | Wartezeit                                       | _   |                                                                                                                                     | 113Fh/<br>113Eh | 4415/<br>4414 | _        | _             |  |  |  |
| C081 | Abgleich Analog-<br>Eingang O (0<br>10V)        | R/W | Abgleich Spannungseingang O und Ausgangsfrequenz<br>0,0 - 200,0%                                                                    | 1141h/<br>1140h | 4417/<br>4416 | 0-2000   | 0,1 %         |  |  |  |
| C082 | Abgleich Analog-<br>Eingang OI (4-<br>20mA)     | R/W | Abgleich Stromeingang<br>OI und Ausgangsfre-<br>quenz<br>0,0 - 200,0%                                                               | 1142h/<br>1141h | 4418/<br>4417 | 0-2000   | 0,1 %         |  |  |  |
| C085 | Abgleich<br>Kaltleitereingang                   | R/W | Bereich 0,0 - 200,0%                                                                                                                | 1144h/<br>1143h | 4420/<br>4419 | 0-2000   | 0,1 %         |  |  |  |
| C086 | Offset Analog-<br>Ausgang AM (0-<br>10V)        | R/W | Bereich 0,0 - 10,0V                                                                                                                 | 1145h/<br>1144h | 4421/<br>4420 | 0-100    | 0,1 V         |  |  |  |
| C091 | Debug-Modus                                     | _   | Anzeige Debug-Parameter (NICHT verändern!): 00 inaktiv 01 aktiv                                                                     | 1148h/<br>1147h | 4424/<br>4423 | _        | _             |  |  |  |
| C101 | Motorpotentiometer-<br>Sollwert speichern       | R/W | Speicherung Sollwert<br>Motorpotentiometer nach<br>Netz-Aus:<br>00 nicht speichern<br>01 speichern                                  | 1149h/<br>1148h | 4425/<br>4424 | 0, 1     | _             |  |  |  |
| C102 | Reset-Signal                                    | R/W | Ausführung RESET-<br>Signal [RST]:<br>00ansteigende Flanke<br>01abfallende Flanke<br>02ansteigende Flanke,<br>aktiv nur bei Störung | 114Ah/<br>1149h | 4426/<br>4425 | 0, 1, 2  | _             |  |  |  |

|           | Holding Register, Gruppe "C" (Steuerfunktionen) |     |                                                                                                |                 |               |                      |               |  |
|-----------|-------------------------------------------------|-----|------------------------------------------------------------------------------------------------|-----------------|---------------|----------------------|---------------|--|
| F1-4      |                                                 |     |                                                                                                |                 | Netzw         | erkdaten             |               |  |
| Fkt<br>Nr | Funktion                                        | R/W | Beschreibung                                                                                   | Reg.<br>(hex)   | Reg.<br>(dez) | Bereich              | Grund<br>wert |  |
| C141      | Log. Verknüpfung<br>Eingang A                   | R/W | Siehe Kapitel "Ausgangs-<br>logik und Zeitverhalten"                                           | 1150h/<br>114Fh | 4432/<br>4431 | 0, 1, 2,<br>3, 4, 5, | _             |  |
| C142      | Log. Verknüpfung<br>Eingang B                   | R/W | auf Seite 3–55                                                                                 | 1151h/<br>1150h | 4433/<br>4432 | 6, 7, 8,<br>9, 10    |               |  |
| C143      | Logische Funktio-<br>nen                        | R/W | Auswahl logischer<br>Verknüpfungen:<br>00UND (A UND B)<br>01ODER (A ODER B)<br>02XOR (A XOR B) | 1152h/<br>1151h | 4434/<br>4433 | 0, 1, 2              | _             |  |
| C144      | Digital-Ausgang 11 / Einschaltverzög.           | R/W | Bereich 0,0 - 100,0 s                                                                          | 1153h/<br>1152h | 4435/<br>4434 | 0-1000               | 0,1 s         |  |
| C145      | Digital-Ausgang 11 /<br>Ausschaltverzög.        | R/W | Bereich 0,0 - 100,0 s                                                                          | 1154h/<br>1153h | 4436/<br>4435 | 0-1000               | 0,1 s         |  |
| C146      | Digital-Ausgang 12 / Einschaltverzög.           | R/W | Bereich 0,0 - 100,0 s                                                                          | 1155h/<br>1154h | 4437/<br>4436 | 0-1000               | 0,1 s         |  |
| C147      | Digital-Ausgang 12 /<br>Ausschaltverzög.        | R/W | Bereich 0,0 - 100,0 s                                                                          | 1156h/<br>1155h | 4438/<br>4437 | 0-1000               | 0,1 s         |  |
| C148      | Relais-Ausgang /<br>Einschaltverzög.            | R/W | Bereich 0,0 - 100,0 s                                                                          | 1157h/<br>1156h | 4439/<br>4438 | 0-1000               | 0,1 s         |  |
| C149      | Relais-Ausgang /<br>Ausschaltverzög.            | R/W | Bereich 0,0 - 100,0 s                                                                          | 1158h/<br>1157h | 4440/<br>4439 | 0-1000               | 0,1 s         |  |

**Hinweis 1:** Angenommener Nennstrom von 10000 (für C041).

Die Tabelle zeigt Holding Register der Gruppe "H" (Motorkonstanten)

| Holding Register, Gruppe "H" (Motorkonstanten) |                                                          |        |                                                                                                                                                       |                 |               |            |               |
|------------------------------------------------|----------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|------------|---------------|
| Fkt                                            |                                                          |        |                                                                                                                                                       |                 | Netzw         | erkdaten   |               |
| Nr                                             | Funktion                                                 | R/W    | Beschreibung                                                                                                                                          | Reg.<br>(hex)   | Reg.<br>(dez) | Bereich    | Grund<br>wert |
| H003                                           | Motorleistung                                            | R/W    | 13 Wahlmöglichkeiten:<br>00,20 kW                                                                                                                     | 1165h/<br>1164h | 4453/<br>4452 | 0-12       |               |
| H203                                           | Motorleistung<br>(2. Parametersatz)                      | R/W    | 1 0,37 kW<br>2 0,40 kW<br>3 0,55 kW<br>4 0,75 kW<br>5 1,10 kW<br>6 1,50 kW<br>7 2,2 kW<br>8 3,0 kW<br>9 3,7 kW<br>10 4,0 kW<br>11 5,5 kW<br>12 7,5 kW | 1540h/<br>153Fh | 5440/<br>5439 | 0-12       |               |
| H004                                           | Motorpolzahl                                             | R/W    | 4 Wahlmöglichkeiten:<br>2 / 4 / 6 / 8                                                                                                                 | 1166h/<br>1165h | 4454/<br>4453 | 2, 4, 6, 8 | 1 Pol         |
| H204                                           | Motorpolzahl (2. Parametersatz)                          | R/W    |                                                                                                                                                       | 1541h/<br>1540h | 5441/<br>5440 | 2, 4, 6, 8 | 1 Pol         |
| H006                                           | Motorstabilisierungs-<br>konstante                       | R/W    | Motorkonstante<br>Bereich 0 - 255                                                                                                                     | 1168h/<br>1167h | 4456/<br>4455 | 0-255      | 1             |
| H206                                           | Motorstabilisierungs-<br>konstante<br>(2. Parametersatz) | R/W    |                                                                                                                                                       | 1543h/<br>1542h | 5443/<br>5442 | 0-255      | 1             |
|                                                | Hole                                                     | ding-R | egister 1187h bis 1500h sir                                                                                                                           | nd reservi      | ert           |            |               |



**HINWEIS:** Parameter der Gruppe "P" können über den ModBus nicht angesprochen werden.

# Einstellungen Antriebsparameter



| In diesem Anhang                       | Seite |
|----------------------------------------|-------|
| — Einleitung                           | 2     |
| — Parametereinstellungen über Tastatur | 2     |

## **Einleitung**

In diesem Anhang sind die benutzerbezogenen Parameter und deren Grundwerte für europäische und amerikanische Produkttypen der Umrichterserie L200 beschrieben. Die rechte Spalte der Tabelle ist freigehalten worden, damit dort geänderte Werte eingetragen werden können. Bei vielen Applikationen müssen nur einige Parameter geändert werden. Die Reihenfolge der Parameter sind in diesem Anhang so dargestellt wie sie auch im Umrichter abgelegt sind.

## Parametereinstellungen über Tastatur

Die Umrichterserie L200 bietet viele Funktionen und Parameter die vom Benutzer eingestellt werden können. Wir empfehlen das Notieren sämtlicher geänderter Werte, um bei der Fehlersuche oder Wiederherstellung von verlorenen Daten behilflich sein zu können.

| Umrichtertyp | L200 | Diese Informationen befinden sich auf einem Aufkleber an der rechten |
|--------------|------|----------------------------------------------------------------------|
| Serien-Nr.   |      | Geräteseite.                                                         |

#### **Basisfunktionen**

|        | Parameter Gruppe "F"                    | Grund            | lwerte       | Anwender- |
|--------|-----------------------------------------|------------------|--------------|-----------|
| FktNr. | Funktion                                | –FEF<br>(Europa) | -FU<br>(USA) | daten     |
| F001   | Anzeige / Eingabe Frequenzsollwert      | 0,0              | 0,0          |           |
| F002   | 1. Hochlaufzeit                         | 10,0             | 10,0         |           |
| F202   | 1. Hochlaufzeit (2. Parametersatz)      | 10,0             | 10,0         |           |
| F003   | 1. Runterlaufzeit                       | 10,0             | 10,0         |           |
| F203   | 1. Runterlaufzeit<br>(2. Parametersatz) | 10,0             | 10,0         |           |
| F004   | Drehrichtung                            | 00               | 00           |           |

## Standardfunktionen

|        | Parameter Gruppe "A"                               | Grund        | Grundwerte   |                      |  |
|--------|----------------------------------------------------|--------------|--------------|----------------------|--|
| FktNr. | Funktion                                           | -FEF<br>(EU) | -FU<br>(USA) | - Anwender-<br>daten |  |
| A001   | Frequenzsollwertvorgabe                            | 01           | 00           |                      |  |
| A201   | Frequenzsollwertvorgabe (2. Parametersatz)         | 01           | 00           |                      |  |
| A002   | Start/Stop-Vorgabe                                 | 01           | 02           |                      |  |
| A202   | Start/Stop-Vorgabe<br>(2. Parametersatz)           | 01           | 02           |                      |  |
| A003   | Motornennfrequenz / Eckfrequenz                    | 50,0         | 60,0         |                      |  |
| A203   | Motornennfrequenz / Eckfrequenz (2. Parametersatz) | 50,0         | 60,0         |                      |  |
| A004   | Maximalfrequenz                                    | 50,0         | 60,0         |                      |  |
| A204   | Maximalfrequenz<br>(2. Parametersatz)              | 50,0         | 60,0         |                      |  |
| A005   | Umschalten der Sollwerteingänge mit Eingang AT     | 00           | 00           |                      |  |
| A011   | Eingang O-L Frequenz bei<br>Min Sollwert           | 0,0          | 0,0          |                      |  |
| A012   | Eingang O-L Frequenz bei<br>MaxSollwert            | 0,0          | 0,0          |                      |  |
| A013   | Eingang O-L MinSollwert                            | 0,0          | 0,0          |                      |  |
| A014   | Eingang O-L MaxSollwert                            | 100          | 100          |                      |  |
| A015   | Eingang O-L Startbedingung                         | 01           | 01           |                      |  |
| A016   | Filter Analog-Eingang                              | 8            | 8            |                      |  |
| A020   | Basisfrequenz                                      | 0,0          | 0,0          |                      |  |
| A220   | Basisfrequenz (2. Parametersatz)                   | 0,0          | 0,0          |                      |  |
| A021   | 1. Festfrequenz                                    | 0,0          | 0,0          |                      |  |
| A022   | 2. Festfrequenz                                    | 0,0          | 0,0          |                      |  |
| A023   | 3. Festfrequenz                                    | 0,0          | 0,0          |                      |  |
| A024   | 4. Festfrequenz                                    | 0,0          | 0,0          |                      |  |
| A025   | 5. Festfrequenz                                    | 0,0          | 0,0          |                      |  |
| A026   | 6. Festfrequenz                                    | 0,0          | 0,0          |                      |  |
| A027   | 7. Festfrequenz                                    | 0,0          | 0,0          |                      |  |
| A028   | 8. Festfrequenz                                    | 0,0          | 0,0          |                      |  |
| A029   | 9. Festfrequenz                                    | 0,0          | 0,0          |                      |  |
| A030   | 10. Festfrequenz                                   | 0,0          | 0,0          |                      |  |



|        | Parameter Gruppe "A"                                        | Grun         | dwerte       | A                  |
|--------|-------------------------------------------------------------|--------------|--------------|--------------------|
| FktNr. | Funktion                                                    | -FEF<br>(EU) | -FU<br>(USA) | Anwender-<br>daten |
| A031   | 11. Festfrequenz                                            | 0,0          | 0,0          |                    |
| A032   | 12. Festfrequenz                                            | 0,0          | 0,0          |                    |
| A033   | 13. Festfrequenz                                            | 0,0          | 0,0          |                    |
| A034   | 14. Festfrequenz                                            | 0,0          | 0,0          |                    |
| A035   | 15. Festfrequenz                                            | 0,0          | 0,0          |                    |
| A038   | Tipp-Frequenz                                               | 1,00         | 1,00         |                    |
| A041   | Boost-Charakteristik                                        | 00           | 00           |                    |
| A241   | Boost-Charakteristik<br>(2. Parametersatz)                  | 00           | 00           |                    |
| A039   | Tipp-Frequenz Stopp-Modus                                   | 00           | 00           |                    |
| A042   | Manueller Boost                                             | 1,8          | 1,8          |                    |
| A242   | Manueller Boost<br>(2. Parametersatz)                       | 0,0          | 0,0          |                    |
| A043   | Maximaler Boost bei %Eckfrequenz                            | 10,0         | 10,0         |                    |
| A243   | Maximaler Boost bei %Eckfrequenz (2. Parametersatz)         | 0,0          | 0,0          |                    |
| A044   | Arbeitsverfahren/U/f-Charakteristik                         | 02           | 02           |                    |
| A244   | Arbeitsverfahren/U/f-Charakteris-<br>tik (2. Parametersatz) | 02           | 02           |                    |
| A045   | Ausgangsspannung                                            | 100          | 100          |                    |
| A245   | Ausgangsspannung<br>(2. Parametersatz)                      | 100          | 100          |                    |
| A051   | DC-Bremse intern / aktiv/inaktiv                            | 00           | 00           |                    |
| A052   | DC-Bremse / Einschaltfrequenz                               | 0,5          | 0,5          |                    |
| A053   | DC-Bremse / Wartezeit                                       | 0,0          | 0,0          |                    |
| A054   | DC-Bremse / Bremsmoment                                     | 0            | 0            |                    |
| A055   | DC-Bremse / Bremszeit                                       | 0,0          | 0,0          |                    |
| A056   | DC-Bremse / Charakteristik                                  | 01           | 01           |                    |
| A061   | Max. Betriebsfrequenz                                       | 0,0          | 0,0          |                    |
| A261   | Max. Betriebsfrequenz<br>(2. Parametersatz)                 | 0,0          | 0,0          |                    |
| A062   | Min. Betriebsfrequenz                                       | 0,0          | 0,0          |                    |
| A262   | Min. Betriebsfrequenz<br>(2. Parametersatz)                 | 0.0          | 0.0          |                    |
| A063   | Frequenzsprung 1                                            | 0,0          | 0,0          |                    |
| A064   | Frequenzsprung 1 / Sprungweite                              | 0,5          | 0,5          |                    |

|        | Parameter Gruppe "A"                                   | Grund        | A            |                      |
|--------|--------------------------------------------------------|--------------|--------------|----------------------|
| FktNr. | Funktion                                               | -FEF<br>(EU) | -FU<br>(USA) | - Anwender-<br>daten |
| A065   | Frequenzsprung 2                                       | 0,0          | 0,0          |                      |
| A066   | Frequenzsprung 2 / Sprungweite                         | 0,5          | 0,5          |                      |
| A067   | Frequenzsprung 3                                       | 0,0          | 0,0          |                      |
| A068   | Frequenzsprung 3 / Sprungweite                         | 0,5          | 0,5          |                      |
| A071   | PID-Regler aktiv / inaktiv                             | 00           | 00           |                      |
| A072   | P-Anteil                                               | 1,0          | 1,0          |                      |
| A073   | I-Anteil                                               | 1,0          | 1,0          |                      |
| A074   | D-Anteil                                               | 0,0          | 0,0          |                      |
| A075   | Anzeigefaktor                                          | 1,00         | 1,00         |                      |
| A076   | Eingang Istwertsignal                                  | 00           | 00           |                      |
| A077   | Invertierung PID-Regelung                              | 00           | 00           |                      |
| A078   | Ausgangsbegrenzung<br>PID-Regelung                     | 0,0          | 0,0          |                      |
| A081   | AVR-Funktion / Charakteristik                          | 00           | 00           |                      |
| A082   | Motorspannung / Netzspannung                           | 230/400      | 230/460      |                      |
| A092   | 2. Hochlaufzeit                                        | 15,00        | 15,00        |                      |
| A292   | 2. Hochlaufzeitt<br>(2. Parametersatz)                 | 15,00        | 15,00        |                      |
| A093   | 2. Runteraufzeit                                       | 15,00        | 15,00        |                      |
| A293   | 2. Runteraufzeit<br>(2. Parametersatz)                 | 15,00        | 15,00        |                      |
| A094   | Umschalten 1. Rampe auf 2. Rampe                       | 00           | 00           |                      |
| A294   | Umschalten 1. Rampe auf 2.<br>Rampe (2. Parametersatz) | 00           | 00           |                      |
| A095   | Umschaltfrequenz Hochlaufzeit                          | 0,0          | 0,0          |                      |
| A295   | Umschaltfrequenz Hochlaufzeit (2. Parametersatz)       | 0,0          | 0,0          |                      |
| A096   | Umschaltfrequenz Runterlaufzeit                        | 0,0          | 0,0          |                      |
| A296   | Umschaltfrequenz Runterlaufzeit (2. Parametersatz)     | 0,0          | 0,0          |                      |
| A097   | Hochlaufcharakteristik                                 | 00           | 00           |                      |
| A098   | Runterlaufcharakteristik                               | 00           | 00           |                      |
| A101   | Eingang [OI]–[L]<br>Frequenz bei Min Sollwert          | 0,0          | 0,0          |                      |
| A102   | Eingang [OI]–[L]<br>Frequenz bei MaxSollwert           | 0,0          | 0,0          |                      |

|        | Parameter Gruppe "A"                               | Grund        | dwerte       | Anwender- |
|--------|----------------------------------------------------|--------------|--------------|-----------|
| FktNr. | Funktion                                           | -FEF<br>(EU) | -FU<br>(USA) | daten     |
| A103   | Eingang [OI]–[L] MinSollwert                       | 0,0          | 0,0          |           |
| A104   | Eingang [OI]–[L] MaxSollwert                       | 100          | 100          |           |
| A105   | Eingang [OI]–[L] Startbedingung                    | 01           | 01           |           |
| A141   | Rechenfunktion (Variable A)                        | 02           | 02           |           |
| A142   | Rechenfunktion (Variable B)                        | 03           | 03           |           |
| A143   | Rechenfunktion                                     | 00           | 00           |           |
| A145   | Offset Frequenzaddition                            | 0,0          | 0,0          |           |
| A146   | Frequenzaddition / Frequenzsubtraktion             | 00           | 00           |           |
| A151   | Internes Potentiometer<br>Frequenz bei MinSollwert | 0,0          | 0,0          |           |
| A152   | Internes Potentiometer<br>Frequenz bei MaxSollwert | 0,0          | 0,0          |           |
| A153   | Internes Potentiometer<br>MinSollwert              | 0,0          | 0,0          |           |
| A154   | Internes Potentiometer<br>MaxSollwert              | 100          | 100          |           |
| A155   | Internes Potentiometer<br>Startbedingung           | 01           | 01           |           |

## Feinabstimmungsfunktionen

|        | Parameter Gruppe "b"                                                | Grund                     | lwerte                    | Anwender- |
|--------|---------------------------------------------------------------------|---------------------------|---------------------------|-----------|
| FktNr. | Funktion                                                            | -FEF<br>(EU)              | -FU<br>(USA)              | daten     |
| b001   | Wiederanlaufmodus                                                   | 00                        | 00                        |           |
| b002   | Zulässige Netzausfallzeit                                           | 1,0                       | 1,0                       |           |
| b003   | Wartezeit vor Wiederanlauf                                          | 1,0                       | 1,0                       |           |
| b004   | Kurzzeitiger Netzausfall /<br>Unterspannung im Stillstand           | 00                        | 00                        |           |
| b005   | Kurzzeitiger Netzausfall /<br>Unterspannung                         | 00                        | 00                        |           |
| b012   | Elektronischer Motorschutz /<br>Einstellwert                        | FU-<br>Nennstrom          | FU-<br>Nennstrom          |           |
| b212   | Elektronischer Motorschutz /<br>Einstellwert (2. Parametersatz)     | FU-<br>Nennstrom          | FU-<br>Nennstrom          |           |
| b013   | Elektronischer Motorschutz /<br>Charakteristik                      | 01                        | 01                        |           |
| b213   | Elektronischer Motorschutz /<br>Charakteristik (2. Parametersatz)   | 01                        | 01                        |           |
| b021   | Stromgrenze Charakteristik                                          | 01                        | 01                        |           |
| b221   | Stromgrenze Charakteristik<br>(2. Parametersatz)                    | 01                        | 01                        |           |
| b022   | Stromgrenze Einstellwert                                            | FU-<br>Nennstrom x<br>1,5 | FU-<br>Nennstrom x<br>1,5 |           |
| b222   | Stromgrenze Einstellwert (2. Parametersatz)                         | FU-<br>Nennstrom<br>x 1,5 | FU-<br>Nennstrom<br>x 1,5 |           |
| b023   | Stromgrenze Zeitkonstante                                           | 1,0                       | 30,0                      |           |
| b223   | Stromgrenze Zeitkonstante (2. Parametersatz)                        | 1,0                       | 30,0                      |           |
| b028   | Anwahl Stromgrenze Einstellwert                                     | 00                        | 00                        |           |
| b228   | Anwahl Stromgrenze Einstellwert (2. Parametersatz)                  | 00                        | 00                        |           |
| b031   | Parametersicherung                                                  | 01                        | 01                        |           |
| b032   | Motor-Leerlaufstrom (Parameter wird nur im Debug- Modus aufgerufen) | 100                       | 100                       |           |
| b080   | Abgleich Analog-Ausgang [AM]                                        | 100                       | 100                       |           |
| b082   | Startfrequenz                                                       | 0,5                       | 0,5                       |           |
| b083   | Taktfrequenz                                                        | 5,0                       | 5,0                       |           |

|        | Parameter Gruppe "b"                            | Grund        | lwerte       | Anwender- |
|--------|-------------------------------------------------|--------------|--------------|-----------|
| FktNr. | Funktion                                        | -FEF<br>(EU) | -FU<br>(USA) | daten     |
| b084   | Werkseinstellung / Initialisierung              | 00           | 00           |           |
| b085   | Werkseinstellungsparameter /<br>Ländercode      | 01           | 02           |           |
| b086   | Frequenzanzeigefaktor                           | 1,0          | 1,0          |           |
| b087   | Stop-Taste bei Start/Stop über<br>Eingang FW/RV | 00           | 00           |           |
| b088   | Motorsynchronisation                            | 00           | 00           |           |
| b089   | Anzeigenauswahl für einen vernetzten Umrichter  | 01           | 01           |           |
| b091   | Stop-Modus                                      | 00           | 00           |           |
| b130   | Runterlaufzeit<br>Zwischenkreisüberspannung     | 00           | 00           |           |
| b131   | Einstellwert<br>Zwischenkreisüberspannung       | 380 / 760    | 380 / 760    |           |
| b150   | Temperaturabhängige Taktfrequenz                | 00           | 00           |           |
| b151   | Quick-Start-Funktion                            | 00           | 00           |           |

## Steuerfunktionen

| Parameter Gruppe "C" |                                                    | Grund            | lwerte           | Anwender- |
|----------------------|----------------------------------------------------|------------------|------------------|-----------|
| FktNr.               | Funktion                                           | -FEF<br>(EU)     | -FU<br>(USA)     | daten     |
| C001                 | Digital-Eingang 1                                  | 00               | 00               |           |
| C201                 | Digital-Eingang 1<br>(2. Parametersatz)            | 00               | 00               |           |
| C002                 | Digital-Eingang 2                                  | 01               | 01               |           |
| C202                 | Digital-Eingang 2<br>(2. Parametersatz)            | 01               | 01               |           |
| C003                 | Digital-Eingang 3                                  | 02               | 16               |           |
| C203                 | Digital-Eingang 3<br>(2. Parametersatz)            | 02               | 16               |           |
| C004                 | Digital-Eingang 4                                  | 03               | 13               |           |
| C204                 | Digital-Eingang 4<br>(2. Parametersatz)            | 03               | 13               |           |
| C005                 | Digital-Eingang 5                                  | 18               | 09               |           |
| C205                 | Digital-Eingang 5<br>(2. Parametersatz)            | 18               | 09               |           |
| C011                 | Digital-Eingang 1 S/Ö                              | 00               | 00               |           |
| C012                 | Digital-Eingang 2 S/Ö                              | 00               | 00               |           |
| C013                 | Digital-Eingang 3 S/Ö                              | 00               | 00               |           |
| C014                 | Digital-Eingang 4 S/Ö                              | 00               | 01               |           |
| C015                 | Digital-Eingang 5 S/Ö                              | 00               | 00               |           |
| C021                 | Digital-Ausgang 11                                 | 01               | 01               |           |
| C022                 | Digital-Ausgang 12                                 | 00               | 00               |           |
| C026                 | Relais-Ausgang AL0-AL1-AL2                         | 05               | 05               |           |
| C028                 | Analog-Ausgang AM                                  | 00               | 00               |           |
| C031                 | Digital-Ausgang 11 Schließer/Öffner                | 00               | 00               |           |
| C032                 | Digital-Ausgang 12                                 | 00               | 00               |           |
| C036                 | Störmelderelais AL0-AL2<br>Schließer / Öffner      | 01               | 01               |           |
| C041                 | Überlast-Alarm Schwelle (OL)                       | FU-<br>Nennstrom | FU-<br>Nennstrom |           |
| C241                 | Überlast-Alarm Schwelle (OL)<br>(2. Parametersatz) | FU-<br>Nennstrom | FU-<br>Nennstrom |           |
| C042                 | Frequenz überschritten im Hochlauf (FA2, FA3)      | 0,0              | 0,0              |           |
| C043                 | Frequenz überschritten im Runterlauf (FA2, FA3)    | 0,0              | 0,0              |           |

|        | Parameter Gruppe "C"                          | Grundwerte   |              | A movement and       |
|--------|-----------------------------------------------|--------------|--------------|----------------------|
| FktNr. | Funktion                                      | -FEF<br>(EU) | -FU<br>(USA) | - Anwender-<br>daten |
| C044   | PID-Regler Abweichung                         | 3,0          | 3,0          |                      |
| C052   | PID-Regler /<br>Obere Istwertbegrenzung       | 100,0        | 100,0        |                      |
| C053   | PID-Regler /<br>Untere Istwertbegrenzung      | 0,0          | 0,0          |                      |
| C071   | Baudrate                                      | 06           | 04           |                      |
| C072   | Adresse                                       | 1            | 1            |                      |
| C074   | Parität                                       | 00           | 00           |                      |
| C075   | Stopbits                                      | 1            | 1            |                      |
| C076   | Übertragungsfehler                            | 02           | 02           |                      |
| C077   | Unterbrechung Übertragungsfehler              | 0,00         | 0,00         |                      |
| C078   | Wartezeit                                     | 0            | 0            |                      |
| C081   | Abgleich Analog-Eingang O (0-10V)             | 100,0        | 100,0        |                      |
| C082   | Abgleich Analog-Eingang OI (4-20mA)           | 100,0        | 100,0        |                      |
| C085   | Abgleich Kaltleitereingang                    | 100,0        | 100,0        |                      |
| C086   | Offset Analog-Ausgang AM (0-10V)              | 0,0          | 0,0          |                      |
| C091   | Debug-Modus                                   | 00           | 00           |                      |
| C101   | Motorpotentiometer-Sollwert speichern         | 00           | 00           |                      |
| C102   | Reset-Signal                                  | 00           | 00           |                      |
| C141   | Logische Verknüpfung Eingang A                | 00           | 00           |                      |
| C142   | Logische Verknüpfung Eingang B                | 01           | 01           |                      |
| C143   | Logische Funktionen                           | 00           | 00           |                      |
| C144   | Digital-Ausgang 11 /Einschaltverzö-<br>gerung | 0,0          | 0,0          |                      |
| C145   | Digital-Ausgang 11 /Ausschaltverzögerung      | 0,0          | 0,0          |                      |
| C146   | Digital-Ausgang 12 /<br>Einschaltverzögerung  | 0,0          | 0,0          |                      |
| C147   | Digital-Ausgang 12 /<br>Ausschaltverzögerung  | 0,0          | 0,0          |                      |
| C148   | Relais-Ausgang /<br>Einschaltverzögerung      | 0,0          | 0,0          |                      |
| C149   | Relais-Ausgang /<br>Ausschaltverzögerung      | 0,0          | 0,0          |                      |

### Motorkonstanten

|        | Parameter Gruppe "H"                             | ippe "H" Grundwerte   |                       | Anwender- |
|--------|--------------------------------------------------|-----------------------|-----------------------|-----------|
| FktNr. | Funktion                                         | -FEF<br>(EU)          | -FU<br>(USA)          | daten     |
| H003   | Motorleistung                                    | Leistung<br>Umrichter | Leistung<br>Umrichter |           |
| H203   | Motorleistung (2. Parametersatz)                 | Leistung<br>Umrichter | Leistung<br>Umrichter |           |
| H004   | Motorpolzahl                                     | 4                     | 4                     |           |
| H204   | Motorpolzahl (2. Parametersatz)                  | 4                     | 4                     |           |
| H006   | Motorstabilisierungskonstante                    | 100                   | 100                   |           |
| H206   | Motorstabilisierungskonstante (2. Parametersatz) | 100                   | 100                   |           |

## **BUS-Kommunikation**

| Parameter Gruppe "P" |                                         | Grundwerte   |              | Anwender- |
|----------------------|-----------------------------------------|--------------|--------------|-----------|
| FktNr.               | Funktion                                | -FEF<br>(EU) | -FU<br>(USA) | daten     |
| P044                 | Einstellzeit Kommunikationsverlust      | 1,0          | 1,0          |           |
| P045                 | Verhalten bei Kommunikations-<br>fehler | 01           | 01           |           |
| P046                 | Polling Ausgänge                        | 21           | 21           |           |
| P047                 | Polling Eingänge                        | 71           | 71           |           |
| P048                 | Verhalten bei nicht aktivem BUS         | 01           | 01           |           |
| P049                 | Motorpolzahl über BUS                   | 0            | 0            |           |

# CE-EMV Installations-Richtlinien

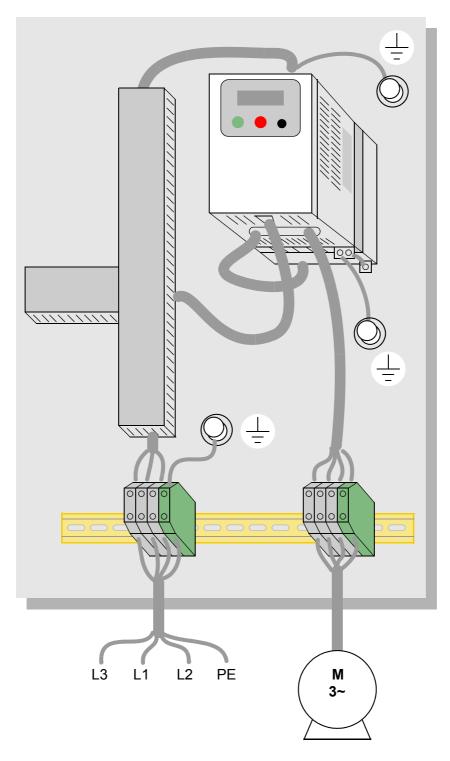


| In diesem Anhang                   | Seite |
|------------------------------------|-------|
| — CE–EMV Installations-Richtlinien | 2     |
| — Hitachi EMV-Vorschläge           | 6     |

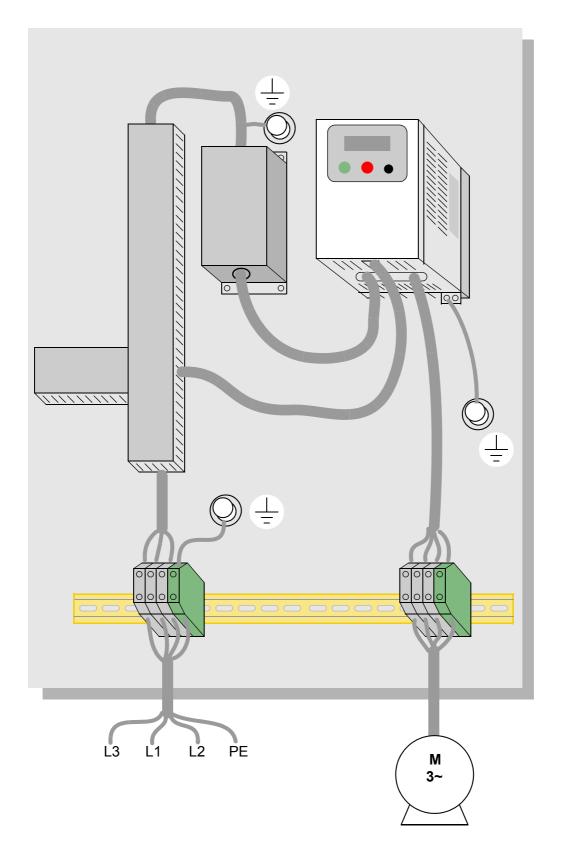
#### **CE-EMV Installations-Richtlinien**

Das CE-Zeichen Ihres HITACHI Frequenzumrichters dokumentiert die Übereinstimmung mit der Niederspannungsrichtlinie (73/23/EWG), sowie der EMV-Richtlinie (89/336/EWG), sofern auch die Installation nach den entsprechenden Vorschriften erfolgt. Da der Frequenzumrichter in den meisten Fällen durch Fachleute eingebaut und als Komponente in einer Maschine bzw. in einem System zum Einsatz kommt, liegt hier der Verantwortungsbereich beim Installateur. Die folgenden Informationen beschreiben daher den EMV-gerechten Aufbau Ihres Antriebssystems.

- **1.** Bei der Installation müssen Sie dafür sorgen, dass die HF-Impedanz zwischen Frequenzumrichter, Filter und Erde möglichst klein ist.
  - Sorgen Sie für möglichst großflächige, metallische Verbindungen (verzinkte Montageplatten).
- **2.** Leiterschleifen wirken wie Antennen. Insbesondere wenn sie räumlich ausgedehnt sind.
  - · Vermeiden Sie unnötige Leiterschleifen.
  - Vermeiden Sie parallele Leitungsführung von "sauberen" und störbehafteten Leitungen.
- **3.** Verlegen Sie das Motorkabel sowie alle analogen und digitalen Steuer- und Regelungsleitungen abgeschirmt.
  - Die wirksame Schirmfläche dieser Leitungen sollten Sie so groß wie möglich lassen, d.h. setzen Sie den Schirm nicht weiter ab als unbedingt erforderlich.
  - Der Schirm ist beidseitig, großflächig auf Erde zu legen. (Ausnahme: Nur bei Steuerleitungen in verzweigten Systemen, wenn sich z. B. die kommunizierende Steuerungseinheit in einem anderen Anlagenteil befindet, empfiehlt sich die einseitige Auflegung des Schirms auf der Frequenzumrichterseite, möglichst direkt im Bereich des Kabeleintritts in den Schaltschrank)
  - Die großflächige Kontaktierung läßt sich durch metallische PG-Verschraubungen bzw. metallische Montageschellen realisieren.
  - Verwendung von Kupfergeflecht-Kabel mit einer Bedeckung von 85%.
  - Die Abschirmung sollte über die gesamte Kabellänge nicht unterbrochen werden. Ist z.B. in der Motorleitung der Einsatz von Drosseln, Schützen, Klemmen oder Sicherheitsschaltern erforderlich, so sollte der nicht abgeschirmte Teil so klein wie möglich gehalten werden.
  - Einige Motoren haben zwischen dem Klemmkasten und dem Motorgehäuse eine Gummidichtung. Sehr häufig sind die Klemmkästen, speziell auch die Gewinde für die metallischen PG-Verschraubungen lackiert. Achten Sie immer auf gute metallische Verbindungen zwischen der Abschirmung des Motorkabels, der metallischen PG-Verschraubung, dem Klemmenkasten und dem Motorgehäuse und entfernen Sie ggf. sorgfältig den Lack.


- **4.** Sehr häufig werden Störungen über die Installationskabel eingekoppelt. Diesen Einfluß können Sie minimieren.
  - Verlegen Sie störende Kabel getrennt Mindestabstand 0,25m von störempfindlichen Kabeln. Besonders kritisch ist die parallele Verlegung von Kabeln über längere Strecken. Bei zwei Kabeln die sich kreuzen, ist die Störbeeinflussung am kleinsten, wenn die Kreuzung im Winkel von 90° verläuft. Störempfindliche Kabel sollten daher Motorkabel, Zwischenkreiskabel oder die Verkabelung eines Bremswiderstandes nur im Winkel von 90° kreuzen und niemals über größere Strecken parallel zu ihnen verlegt werden.
- **5.** Der Abstand zwischen einer Störquelle und einer Störsenke (störgefährdeten Einrichtung) bestimmt wesentlich die Auswirkungen der ausgesendeten Störungen auf die Störsenke.
  - Setzen Sie nur störfeste Geräte ein und halten zum Antrieb und den zugehörigen Komponenten einen Mindestabstand von 0,25m.

#### 6. Schutzmaßnahmen


- Stellen Sie sicher, dass der Schutzleiteranschluss (PE) des Filters korrekt mit dem Schutzleiteranschluss des Frequenzumrichters verbunden ist. Die HF-Erdverbindung über den metallischen Kontakt zwischen den Gehäusen des Filters und des Frequenzumrichters ist als Schutzleiterverbindung nicht zulässig. Der Filter muss fest und dauerhaft mit dem Erdpotential verbunden werden, um im Fehlerfall die Gefahr eines Stromschlages bei Berühren des Filters auszuschließen. Das können Sie erreichen durch:
- Anschluss mittels einer Erdungsleitung vom mindestens 10 mm<sup>2</sup>.
- Anschluss einer zweiten Erdungsleitung parallel zum Schutzleiter, angeschlossen an einen separaten Erdanschluss. (Der Querschnitt jedes einzelnen Schutzleiteranschlusses muss für die benötigte Nennbelastung ausgelegt sein.)

L200<sub>2</sub> Umrichter für den europäischen Markt sind sowohl mit integrierten Filtern (xxxNFEF/HFEF) wie auch mit externen Filtern (xxxNFE/HFE) erhältlich. Die folgenden Beispiele zeigen den Schaltschrankaufbau und Verdrahtungsbeispiele für die Anwendung von zusätzlichen unterschiedlichen Filtertypen.

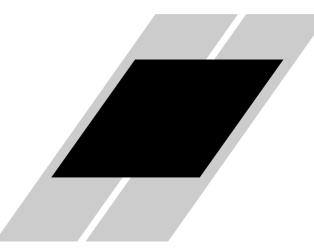




## L200<sub>2</sub> Umrichter mit Booktype-Filter



## Hitachi EMV-Vorschläge




**WARNUNG:** Die Installation, Inbetriebnahme und Wartung dieser Antriebe darf nur von fachkundigem Personal, das mit der Funktionsweise der Ausrüstung sowie der gesamten Maschine vollständig vertraut ist, durchgeführt werden.

Verwenden Sie die folgende Prüfliste, um sicherzustellen, dass der Umrichter die passenden Bedienbereiche und -bedingungen hat.

- **1.** Die Netzversorgung des L200<sub>2</sub> muss folgenden Anforderungen entsprechen:
  - Spannungsschwankungen ±10% oder kleiner
  - Spannungsunsymmetrie ±3% oder kleiner
  - Frequenzschwankungen ±4% oder kleiner
  - Spannungsverzögerungen THD = 10% oder kleiner
- 2. Installationshinweis:
  - Verwendung eines Filters für Umrichter L200<sub>2</sub>.
- 3. Verdrahtung:
  - Zur Motorverdrahtung wird abgeschirmte Leitung benötigt, wobei die Länge kleiner als 50m sein muss.
  - Die Taktfrequenzeinstellung muss kleiner als 5 kHz sein, um den EMV-Anforderungen zu genügen.
  - Getrennte Verdrahtung der Leistungs- und Steuerleitungen.
- **4.** Umgebungsbedingungen bei Verwendung eines Filters folgende Bedingungen beachten:
  - Außentemperatur: -10 bis 40 °C
  - Luftfeuchtigkeit: 20 bis 90% (nicht kondensierend)
  - Erschütterung: 5,9 m/s<sup>2</sup> (0,6 G) 10 ~ 55Hz
  - Aufstellhöhe: max. 1000 m Höhe über NN, innen (keine aggressiven Gase oder Staub)

# Index



| <b>A</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Befestigungsmoment Schraubklemmen xiv, 2–20                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ableitströme EMV-Filter 2–16 Abmessungen EMV-Filter 2–17 Abschlusswiderstand, Netzwerk B–4 Allgemeine Beschreibungen 1–10 Analog inputs calibration settings 3–53 Analogausgänge Anschluss Analogausgänge 4–53 Einstellungen 3–50 Analogeingänge Analogabgleich 3–53 Anschluss Analogeingänge 4–51 Anwahl Strom/Spannung 4–23 Einstellungen 3–14, 3–28 Signal "Unterbrechung Analogeingang" 4–44 Verdrahtungsbeispiele 4–51 Antriebssystem 2–7 Anverwandte Frequenzfunktionen 3–21 | Beharrungsmoment A-4 Belüftung 2-10, 2-24 Beschleunigung 1-16, 3-9 2. Parametersatz 3-25 Kurvenverlauf 3-27 Zweistufig 4-18 Beschleunigungs-/Verzögerungscharakteristik 3-27 Betriebfrequenzbereich 3-21 Betriebsarten 3-5 Bewegungsenergie A-4 Blindwiderstand A-5 Bremschopper 2-7 Bremsen 1-15 Bremseinheit 1-18 Einstellungen Gleichstrombremse 3-20 Generatorisches Bremsen 5-4 Bremswiderstand 2-7, A-2 |
| Anzahl Motorpole 1–18, 2–34, 3–57 Arbeitsverfahren Drehmomentenregelung 3–                                                                                                                                                                                                                                                                                                                                                                                                         | С                                                                                                                                                                                                                                                                                                                                                                                                             |
| Arbeitsverfahren Drehmomentregelung 3–5, 3–18, 3–57 Ausgangsfrequenz 2–35                                                                                                                                                                                                                                                                                                                                                                                                          | CE Approbation A=2 CE-EMC Richtlinien D=2 CE-Zulassung 1=4                                                                                                                                                                                                                                                                                                                                                    |
| Einstellungen <u>3–9</u> Ausgangsklemmen <u>2–4, 3–43, 3–48, 4–6, 4–</u>                                                                                                                                                                                                                                                                                                                                                                                                           | D                                                                                                                                                                                                                                                                                                                                                                                                             |
| 34 Ausgangsspannung 3–19 Auswahl Programmiereinheit 3–2 Automatische Spannungsregulierung 2–32, 3–24 Auto-tuning A–2 AVR 2–32, 3–24                                                                                                                                                                                                                                                                                                                                                | D-Anteil 3–23 Digitale Ausgänge 4–4, 4–34 Ein-/Ausschaltverzögerung 3–56, 4–36 Digitale Bedieneinheit A–3 Digitale Eingänge 4–4, 4–9 Diode A–3 DIP-Schalter 2–5 DIP-Schalter Einstellungen 2–5, 2–30, 3–11, 4–9, B–4                                                                                                                                                                                          |
| В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 M S 7                                                                                                                                                                                                                                                                                                                                                                                                       |

| Drehmoment-Boost <u>3–18</u>                  | Freies Auslaufen A-3                                                   |
|-----------------------------------------------|------------------------------------------------------------------------|
| Drehmomentenregelung <u>3–5</u> , <u>3–57</u> | Frequenzabgleich <u>3–40</u> , <u>3–42</u>                             |
| Drehstromnetz                                 | Frequenzaddition <u>3–30</u> , <u>4–32</u>                             |
| Definition A-7                                | Frequenzanzeigefaktor 3–38                                             |
| Eingangsspannungsbereiche <u>1–13</u>         | Frequenzeinstellung A-3                                                |
| Leistungsanschlussklemmen 2–21                | Frequenzgeregelte Antriebe                                             |
| Drehzahl (RPM) 2–36                           | Grundlagen <u>1–12</u>                                                 |
| Drehzahlgeregelte Motore 1–12, 1–16, 4–13     | Frequenzsollwertvorgabe 3-10, 4-31, 4-33                               |
|                                               | Frequenzsprung <u>3–22</u> , <u>A–4</u>                                |
| E                                             | Funkentstörfilter xii, 5-3                                             |
| <b>–</b>                                      | Funktionen <u>1–15</u> , <u>2–27</u>                                   |
| Eingangsklemmen <u>3–43</u> , <u>4–9</u>      | Funktionen Gruppe "A" 3–10                                             |
| Einschaltdauer A-3                            | Funktionen Gruppe "B" 3–31                                             |
| Einschalttest 2–24                            | Funktionen Gruppe "C" 3–43                                             |
| Überwachungen <u>2–36</u>                     | Funktionen Gruppe "D" 3–6                                              |
| Elektronischer Motorschutz xv                 | Funktionen Gruppe "F" 3–9                                              |
| Konfiguration 3-32                            | Funktionen Gruppe "H" 3–57                                             |
| Störmeldungen <u>6–6</u>                      | Funktionen Gruppe "P" 3–57                                             |
| EMI (Elektromagnetische Störungen) A–3        | · · · · · · · · · · · · · · · · · · ·                                  |
| EMI Filter xii                                | G                                                                      |
| EMV Installation                              | G                                                                      |
| Ableitströme <u>2–16</u>                      | Garantie 6–18                                                          |
| Abmessungen 2–17                              | Gegenmoment A-6                                                        |
| Bauform <u>2–17</u>                           | Gehäuseabdeckung entfernen 2–3                                         |
| Richtlinien D-2                               | Generatorisches Bremsen 1–15, 5–4, A–5                                 |
| Vorschläge <u>D-6</u>                         | Verwendung $5-4$                                                       |
| EMV-Verträglichkeit D–2                       | Geschwindigkeitsprofile 1–16                                           |
| Error, PID loop A-3                           | Gleichrichter A–5                                                      |
| Ersatzteile 6–13                              | Gleichstrombremse <u>3–20</u> , <u>4–15</u> , <u>4–16</u> , <u>A–2</u> |
| Externe Störung 4–20                          | Grundeinstellungen                                                     |
| Störmeldungen 6–6                             | Parameterliste <u>C–2</u>                                              |
| otomoladingon <u>o o</u>                      | Werkseinstellungen 6–9                                                 |
| F                                             | Tromosmotomangon <u>a a</u>                                            |
| Г                                             | U                                                                      |
| FAQ <u>1–17</u>                               | н                                                                      |
| Fehlerereignisse <u>3–7</u> , <u>4–24</u>     | Häufig gestellte Fragen 1–17                                           |
| Definition A-7                                | Hochfrequenzentstörfilter <u>5–2</u>                                   |
| Erdungsfehler 6–7                             | Netzdrossel 2–7                                                        |
| Fehlerbehebung 6–6                            | <del></del>                                                            |
| Signal "Externe Störung" 4–20                 | I                                                                      |
| Störmeldungen <u>6–6</u>                      |                                                                        |
| Störspeicher 6–8                              | I-Anteil 3–23                                                          |
| Treiberfehler 6–7                             | IGBT <u>1–12</u> , <u>A–4</u>                                          |
| Übertemperatur Umrichter 6–7                  | Prüfung <u>6–17</u>                                                    |
| Fehlerspeicher <u>3–7</u>                     | Initialisierung                                                        |
| Fehlersuche, Beseitigung 6–3                  | Ländercodes <u>3–38</u> , <u>6–9</u>                                   |
| Feinabstimmungsfunktionen "B" 3–31            | Installationshinweise 2–8                                              |
| Festfrequenzen A-4                            | Inverter A-4                                                           |
| Betrieb 4–13                                  | iSLV <u>3–18</u>                                                       |
| Einstellungen 3–16                            | Isolationsprüfung <u>6–12</u>                                          |
| Geschwindigkeitsprofile <u>1–16</u>           | Istwertbegrenzung 4–45                                                 |
| Filter, Funkentstörung <u>5–2</u>             | Istwertbegrenzung 4–45 Istwertsignal (PID-Regler) 3–23                 |
| Freier Auslauf 3–40, 3–42                     | istwortsignal (i ib-itegici) 3-23                                      |
|                                               |                                                                        |

| K                                                                                 | Motorlast <u>A-4</u><br>Motorleistung <u>3-57</u>         |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------|
| Klemmleisten                                                                      | Verdrahtung 2–23                                          |
| Leistungsanschlüsse 2–21                                                          | Motoranschluss 2–23                                       |
| Leitungsquerschnitte xiv, 2-20                                                    | Motor-Leerlaufstrom 3-37                                  |
| Parametrierliste digitale Eingänge 4–7                                            | Motorpotentiometer <u>4–29</u>                            |
| Konfiguration serielle Schnittstelle OPE/485                                      | Motorpotentiometer Up/Down 4–29                           |
| <u>2–5, B–4</u>                                                                   | Motorstart 2–35                                           |
| Konstante U/f-Kennlinie <u>1–13</u>                                               | Motorsynchronisation 3–40, 3–42                           |
| Konstantes Drehmoment 3–18                                                        | • — , —                                                   |
| Kontaktadresse xxi                                                                | N                                                         |
| Kopiereinheit <u>1–3</u> , <u>3–2</u>                                             | IN                                                        |
| Kurzschlussläufer A-6                                                             | Navigationsübersicht 2–29, 3–4                            |
| Kurzzeitiger Netzausfall A-6                                                      | Störmeldungen <u>6–8</u>                                  |
| •                                                                                 | NEC A-4                                                   |
| 1                                                                                 | NEMA                                                      |
| L                                                                                 | Definition A–5                                            |
| Lebensdauer Kondensatoren 6–13                                                    | Installationsanforderungen <u>1–3</u>                     |
| LEDs <u>2–25</u> , <u>2–26</u> , <u>2–35</u> , <u>3–3</u>                         | Nennfrequenz 2–32, A–2                                    |
| Leistung A-4                                                                      | Einstellungen 3–13                                        |
| Leistungsfaktor A-5                                                               | Netzanschluss <u>2–20</u>                                 |
| Lese-/Schreib-/Kopiereinheit 1–3                                                  | Netzausfallzeit 3–31                                      |
| Lieferumfang 2–2                                                                  | Netzdrossel <u>5–3</u> , A–4                              |
| Literaturverzeichnis A-8                                                          | Netzfilter A–2                                            |
| Logische Ausgangsverknüpfungen 3–55, 4–                                           | Netzrückwirkung <u>A–3</u>                                |
| 49                                                                                | Netzwerkanschluss <u>1–17</u> , <u>B–2</u>                |
| Logische Verknüpfungen 3–29                                                       | Datenübertragungsprotokoll <u>B–6</u>                     |
| Losbrechmoment A-2                                                                | ModBus Datenliste <u>B–20</u>                             |
| Lüfterabdeckungen 2–10, 2–24                                                      | Netzwerkabschluss B-4                                     |
| ,                                                                                 | Signal "Netzwerkfehler" 4–48                              |
| M                                                                                 | Störmeldungen <u>6–7</u>                                  |
| IAI                                                                               | Umrichteranzeige 3–8                                      |
| Manueller Drehmomenten-Boost 3–18                                                 | Netzzugang <u>3–5, 3–35, 4–22</u>                         |
| Maße                                                                              |                                                           |
| EMV-Filter <u>2–17</u>                                                            | 0                                                         |
| Klemmengröße 2–20                                                                 | 0                                                         |
| Umrichterabmessungen 2–12                                                         | Open-collector-Ausgänge 4-34, A-5                         |
| Maximalfrequenz <u>3–13</u>                                                       | Optionen <u>5–2</u>                                       |
| Mehrmotorenbetrieb, Konfiguration <u>4–57</u>                                     |                                                           |
| ModBus                                                                            | Р                                                         |
| Datenliste <u>B–20</u>                                                            | •                                                         |
| Einleitung <u>B–2</u>                                                             | P-Anteil <u>3–23</u>                                      |
| Monitoringfunktionen <u>3–6</u>                                                   | Parameteranpassung Ausgangsfunktionen                     |
| Monitor-Modus <u>2–29</u> , <u>2–35</u> , <u>2–36</u> , <u>3–4</u> , <u>3–5</u> , | <u>3–50</u>                                               |
| <u>6–6</u>                                                                        | Parameterbearbeitung 2–26, 2–30                           |
| Montage                                                                           | Parametereinstellung 2–26, 2–30, 3–5                      |
| Einbauort <u>2–9</u>                                                              | in Modus Betrieb <u>3–35,</u> <u>4–22</u>                 |
| Lüftungsabstände <u>2–10</u>                                                      | Parametereinstellungen <u>1–15</u> , <u>2–27</u>          |
| Maße <u>2–12</u>                                                                  | Parameterliste <u>C-2</u>                                 |
| Motor                                                                             | Parametersicherung <u>3–5</u> , <u>3–35</u> , <u>4–22</u> |
| Anzahl Motorpole 1–18, 2–34, 3–57                                                 | PID loop                                                  |
| Motorgeschwindigkeit <u>2–36</u>                                                  | error A-3                                                 |
| Motorkonstanten <u>3–57</u>                                                       | PID-Regler <u>1–19</u>                                    |

| Begrenzung <u>4–55</u>                                                   | Signal "Regelabweichung überschritten" 4-            |
|--------------------------------------------------------------------------|------------------------------------------------------|
| Betrieb PID-Regler 4-54                                                  | <u>41</u>                                            |
| Definition A-5                                                           | Signal "Run" 4-37                                    |
| Einstellungen 3–23                                                       | Signal "Störung" <u>4–35, 4–42</u>                   |
| Invertierung PID-Regler 4–55                                             | Signal "Überlast" 4–40                               |
| Konfiguration 4–55                                                       | Signal "Wiederanlaufsperre" 4–21                     |
| Prozessvariable A-5                                                      | · · · · · · · · · · · · · · · · · · ·                |
|                                                                          | Störmeldungen 6–7                                    |
| Signal "Istwertbegrenzung PID-Regler"                                    | Sink/Source Konfiguration 2–5, 4–9                   |
| <u>4–45</u>                                                              | S-Kurve Beschleunigung/Verzögerung <u>3–27</u>       |
| Steuerbefehl "PID-Regler löschen" 4–28                                   | Sollfrequenz <u>A–2</u>                              |
| Steuerbefehl PID-Regler Ein/Aus 4–28                                     | Sollwert A-6                                         |
| PID-Regler, Signal "Regelabweichung über-                                | Sollwerteingang <u>3–14</u>                          |
| schritten" 4-41                                                          | Sollwerteingang OI <u>4–23</u>                       |
| Potentiometer <u>2–30</u> , <u>3–10</u> , <u>4–51</u>                    | Standardfunktionen 3–10                              |
| Programmiereinheit <u>1–3, 2–26, 3–3, A–3</u>                            | Start/Stop-Vorgabe $2-31$ , $3-10$ , $4-31$ , $4-33$ |
| Programmiermodus $\frac{2-29}{2-29}, \frac{2-36}{2-36}, \frac{3-4}{3-5}$ | Startbefehl 4–12                                     |
| Prozessvariable A-5                                                      | Startfrequenz 3–37, 3–38                             |
| PWM <u>A–5</u>                                                           | Stator A-6                                           |
| P VVIVI A-5                                                              |                                                      |
| _                                                                        | Steuerbefehl "2. Parametersatz" 4–17                 |
| Q                                                                        | Steuerbefehl "2. Zeitrampe" 4–18                     |
| ~                                                                        | Steuerbefehl "3-Draht Steuerung" 4–26                |
| Quadratisches Drehmoment 3–18                                            | Steuerbefehl "Linkslauf" 4–12                        |
| Quadratisches Moment 3–18                                                | Steuerbefehl "Rechtslauf" 4–12                       |
| Quick-Start-Funktion 3–18                                                | Steuerbefehl "Tipp-Betrieb" 4–15                     |
|                                                                          | Steuerbefehl "Wiederanlaufsperre" 4–21               |
| В                                                                        | Steuerfunktionen 4–7                                 |
| R                                                                        | Steuerklemmen                                        |
| Pogolung A 6                                                             | Definition A-4                                       |
| Regelung <u>A-6</u>                                                      | Funktionen 3–43                                      |
| Reglersperre <u>3–40</u> , <u>3–42</u> , <u>4–15</u> , <u>4–19</u>       |                                                      |
| Relais                                                                   | Übersicht Parametrierung 4–7                         |
| Relais-Ausgang <u>4–35</u>                                               | Steuerung über Bedienfeld 4–31                       |
| Signal "Alarm" (Relais) <u>4–42</u>                                      | Stopbefehl <u>4–12</u>                               |
| Reset Umrichter <u>4–24</u>                                              | Stop-Modus <u>3–40</u> , <u>3–42</u>                 |
| Resetfunktion 3–54, 4–24                                                 | Störmeldung <u>4–41</u>                              |
| Revisionen (Handbuch) xix                                                | Störmeldungen, Auslöseereignisse 6–6                 |
| RJ-45 Schnittstelle/Verbindung B-3                                       | Stromauslegung 3–37                                  |
| Rotor A-6                                                                | Stromeingang 3-14                                    |
| Run-Modus <u>2–36, 3–5</u>                                               | Stromgrenze <u>2–33, 3–34</u>                        |
| 1 tuli Wodds <u>2 00, 0 0</u>                                            | Symboldefinition i                                   |
| •                                                                        | <u>.</u>                                             |
| S                                                                        | <b>-</b>                                             |
| Cättigungsononnung A C                                                   | Т                                                    |
| Sättigungsspannung <u>A–6</u>                                            | Tachometer A-6                                       |
| Schaltfrequenz <u>3–38</u>                                               |                                                      |
| Schlupf                                                                  | Taktfrequenz <u>3–37</u> , <u>3–38</u> , <u>A–2</u>  |
| Definition A-6                                                           | Tastatur <u>1–3, 2–2, 3–2</u>                        |
| Schutzleitersnschlüsse <u>1–18,</u> <u>2–23</u>                          | Eigenschaften <u>2–26</u> , <u>3–3</u>               |
| Schutzmaßnahmen 2–25                                                     | Navigation $2-29$ , $3-4$                            |
| Sensorless vector control A-6                                            | Navigation, Störspeicher 6–8                         |
| Serielle Schnittstelle B-3                                               | Technische Daten                                     |
| Service 6–18                                                             | Allgemein <u>1–10</u>                                |
| Sicherheitshinweise į                                                    | Steuersignale 1-11, 4-6                              |
| Sicherungsgrößen <u>xv</u> , <u>2–19</u>                                 | Typenschild 1–4                                      |
|                                                                          | Umrichter 1–5                                        |
| Signal "Frequenz erreicht" 4–38                                          |                                                      |

| Technischer Support xxi                        | Steueranschlüsse <u>2–23,</u> <u>4–6</u>           |
|------------------------------------------------|----------------------------------------------------|
| Terminal-Modus <u>4–33</u>                     | Umrichterausgang <u>2–23</u>                       |
| Thermistor                                     | Verdrahtungsbeispiel <u>4–5</u>                    |
| Abgleich Kaltleitereingang 3–53                | Vorbereitungen 2–18                                |
| Definition A-7                                 | Verlustleistung A-7                                |
| input tuning 3–53                              | Verzögerung <u>1–16</u> , <u>3–9</u> , <u>4–15</u> |
| Signal "Thermistorschutz" 4–25                 | 2. Parametersatz 3–25                              |
| Störmeldungen 6–6, 6–7                         | Kurvenverlauf 3-27                                 |
| Thermistorschutz                               | Zweistufig 4–18                                    |
| Signal "Thermistorschutz" 4–25                 | Verzögerung Ausgänge 3–56, 4–36                    |
| Störmeldungen <u>6–6, 6–7</u>                  | Vierquadrantenbetrieb A-3                          |
| Thermokontakt A-6                              | Vorbeugende Wartung 6–10                           |
| Tipp-Betrieb A-4                               | Volume Valuation of the                            |
| Tippfrequenzeinstellungen <u>3–16</u>          | VA/                                                |
| Totbereich A–2                                 | W                                                  |
|                                                | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\             |
| Transistor A-7                                 | Wärmeschutzschalter A-6                            |
| Trenntransformator A-4                         | Warnungen                                          |
| Typenbezeichnung                               | Allgemeine Warnhinweise x                          |
| auf dem Typenschild <u>1–4</u>                 | Fehlersuche <u>6–2</u>                             |
| Aufschlüsselung <u>1–4</u>                     | Geeigneter Einbauort 2–9                           |
| Typenschild <u>1–4</u>                         | Index zu <u>iv</u>                                 |
|                                                | Vorsichtsmaßnahmen beim Betrieb 4–2                |
| U                                              | Warnungen beim Betrieb 4-3                         |
| •                                              | Wartung                                            |
| U/f Frequenzregelung 3–18                      | Elektrische Messpunkte 6–14                        |
| Überschreiben Grundeinstellungen 3–12          | Lieferumfang 2-2                                   |
| Übersicht 2–2                                  | Messmethode 6–16                                   |
| Überspannungsmeldung 3–31                      | Prüfung IGBT 6–17                                  |
| Störmeldungen <u>6–6</u> , <u>6–7</u>          | Wartungszeiträume 6–10                             |
| Überstrommeldung 3–31                          | Wartungszeiträume 6–10                             |
| UL Hinweise xiii                               | Wechselstromnetz A-6                               |
|                                                |                                                    |
| Umgebungstemperatur <u>2–10</u> , <u>A–2</u>   | Werkseinstellung 3–38                              |
| Umrichter 1–17                                 | Wiederherstellen <u>6–9</u>                        |
| Maße <u>2–12</u>                               | Wiederanlauf 3–31                                  |
| Technische Daten <u>1–5</u>                    | Wörterbuch A-2                                     |
| Umrichtereigenschaften <u>1–2</u> , <u>2–2</u> |                                                    |
| Unterbrechung Analog-Eingang 4–44              | Z                                                  |
| Unterspannung <u>3–31</u>                      | _                                                  |
| Störmeldungen <u>6–6</u> , <u>6–7</u>          | Zubehör <u>1–2</u> , <u>2–7</u>                    |
|                                                | Zweite Zeitrampe 3–25                              |
| V                                              | Zweiter Parametersatz 4–17, 4–57                   |
| <b>V</b>                                       | Zwischenkreisdrossel 2-7, 5-3                      |
| Verbindung zur SPS <u>4–4</u>                  |                                                    |
| Verbindungen                                   |                                                    |
| Serielle Schnittstelle <u>B–3</u>              |                                                    |
| Steueranschlüsse 2–4                           |                                                    |
| Steuerklemmleiste 2–4                          |                                                    |
|                                                |                                                    |
| Verdrahtung                                    |                                                    |
| Analogeingänge <u>4–51</u>                     |                                                    |
| Leistungsklemmen <u>2–6</u>                    |                                                    |
| Leitungsquerschnitte <u>xiv</u> , <u>2–19</u>  |                                                    |
| Netzversorgung 2–20                            |                                                    |
| Relais-Kontakte <u>4–6</u>                     |                                                    |



#### **Hitachi Drives & Automation GmbH**

Am Seestern 18 (Euro-Center) D-40547 Düsseldorf

Tel.: +49 (0)211 730621-60 Fax: +49 (0)211 730621-89 Email: info@hitachi-da.com Web: www.hitachi-da.com



## Hitachi Drives & Automation GmbH Support und Service Center

Technologiepark Bergisch Gladbach Friedrich-Ebert-Straße D-51429 Bergisch Gladbach

Tel.: +49 (0)2204 8428-0 Fax: +49 (0)2204 8428-19

Technische Änderungen vorbehalten