



V.1.9 | updated 10/2020

Page 1 of 99

# **Software description Modbus RTU**





Software description Modbus RTU

V.1.9 | updated 10/2020

Page 2 of 99

# **Summary**

Description of the standard software of the Modbus RTU modules:

| General commands                    | 3  |
|-------------------------------------|----|
| MR-DO4 / MR-DOA4                    | 6  |
| MR-TO4                              | 10 |
| MR-DI4 / MR-DI4-IP                  | 14 |
| MR-DI10                             | 15 |
| MR-SI4                              | 16 |
| MR-DIO4/2 / MR-DIO4/2S MR-DIO4/2-IP | 21 |
| MR-TP                               | 33 |
| MR-AO4                              | 41 |
| MR-AOP4                             | 43 |
| MR-AI8                              | 45 |
| MR-CI4                              | 53 |
| MR-AIO4/2-IP                        | 54 |
| MR-SM3                              | 73 |
| MR-Multi I/O 12DI/7AI/2AO/8DO       | 80 |
| MR-LD6                              | 95 |







Software description Modbus RTU

V.1.9 | updated 10/2020

Page 3 of 99

# **General commands**

#### Bit rate setting with Modbus commands

Parity and bit rate have the same value as with the setting by the address switches. If Parity or bit rate are 0, there will be no setting or storage. The register content is stored in the EEPROM.

Modbus Function "06 (0x06) Write Single Register"
Modbus Function "16 (0x10) Write Multiple Registers"

#### Request

Valid Register Address 0x41 (65) Valid Register Value 2 Bytes

| 15   | 14 | 13 | 12 | 11 | 10 | 9   | 8   | 7 | 6 | 5   | 4    | 3 | 2 | 1 | 0 |
|------|----|----|----|----|----|-----|-----|---|---|-----|------|---|---|---|---|
| 0x53 |    |    |    |    |    | Par | ity |   |   | Bit | rate |   |   |   |   |

Bit 15-8: Magic-Number 0x53 = 83 as protection against accidental writing. The command will be further analyzed only with this number.

| Bit 7-4 | 1    | 2   | 3    |
|---------|------|-----|------|
| Parity  | even | odd | none |

| Bit 3-0  | 1    | 2    | 3    | 4    | 5     | 6     | 7     | 8      |
|----------|------|------|------|------|-------|-------|-------|--------|
| Bit rate | 1200 | 2400 | 4800 | 9600 | 19200 | 38400 | 57600 | 115200 |

#### Response

Echo of Request

## **Example for a frame:**

| Slave address       | 0x12 | Rotary switch setting (18) |
|---------------------|------|----------------------------|
| Function            | 0x06 | Write Single Register      |
| Register address Hi | 0x00 |                            |
| Register address Lo | 0x41 | Bit rate and Parity (65)   |
| Register content Hi | 0x53 | Magic number               |
| Register content Lo | 0x15 | Parity Even, 19200 Bit/s   |

All devices can be switched simultaneously with a Broadcast command (Slave address 0x00) However, it is advised not to do so as this may cause problems:

• Devices from other manufacturers may have under this address a register for a different purpose that will then be operated in the wrong way.

There is no feedback from the individual devices. Consequently the control cannot immediately recognize if the command was correctly received.









Software description Modbus RTU

V.1.9 | updated 10/2020

Page 4 of 99

It is safer to address and switch each device individually. The device will then answer with the old settings of parity and bit rate. Switching will take place afterwards. However, the answer can get lost if the bus is disturbed.

When all devices are switched; it is advised to check communication. Any function of the device providing a feedback is suitable. If a single function is to be used being independent from the process periphery then the function "Diagnostic" sub-function "Return Query Data" is suitable, it returns the transferred data.

If bit rate and parity setting of a device are unknown it is possible to address the device successively with all combinations of bit rate and parity until the device answers. Try the most likely combinations first. Try the lower bit rates last as they take longer.







V.1.9 | updated 10/2020

Page 5 of 99

# Test of the communication system Modbus Function "08 (0x08) Diagnostics"

## Subfunction "0 (0x0000) Return Query Data"

Data Field Any

Response: Echo of Request

# Subfunction "1 (0x0001) Restart Communication Option"

Data Field 0x0000 or 0xFF00 Response: Echo of Request

Action: Clears all Error Counters, Restarts node

# Subfunction "4 (0x0004) Force Listen Only Mode"

Data Field 0x0000

No Response

Action: No response until Node Reset or Function Code 08

Subcode 01

#### Subfunction "10 (0x000A) Clear Counters"

Data Field 0x0000

Response: Echo of Request Action: Clears all Error Counters

# Subfunction "11 (0x000B) Return Bus Message Count"

Data Field 0x0000

Response: Quantity of messages that the remote device has detected on the communications system since its last restart, clear counters operation, or power-up.

#### Subfunction "12 (0x000C) Return Bus Communication Error Count"

Data Field 0x0000

Response: Quantity of errors encountered by the remote device since its last restart, clear counters operation, or power-up. (CRC, Length <3, Parity, Framing

# Subfunction "13 (0x000D) Return Bus Exception Error Count"

Data Field 0x0000

Response: Quantity of Modbus exception responses returned by the remote device since its last restart, clear counters operation, or power-up.

#### Subfunction "14 (0x000E) Return Slave Message Count"

Data Field 0x0000

Response: quantity of messages addressed to the remote device, or broadcast, that the remote device has processed since its last restart, clear counters operation, or power-up.

#### Subfunction "15 (0x000F) Return Slave No Response Count"

Data Field 0x0000

Response: Quantity of messages addressed to the remote device for which it has returned no response (neither a normal response nor an exception response), since its last restart, clear counters operation, or power-up.







Software description Modbus RTU

V.1.9 | updated 10/2020

Page 6 of 99

# MR-DO4 / MR-DOA4

# I/O commands

Modbus Function "01 (0x01) Read Coils"

# Request

Valid Coil Starting Address 0 .. 7
\* for MR-DOA4 Address 4 .. 7 = 0
Valid Quantity of Outputs 1 .. 8

Response

Byte Count 1

Output Status Bit0 .. Bit7

| Bit      | Information                             |
|----------|-----------------------------------------|
| 0        | 0 = Status relay 1 off                  |
|          | 1 = Status relay 1 on                   |
| 1        | 0 = Status relay 2 off                  |
| '        | 1 = Status relay 2 on                   |
| 2        | 0 = Status relay 3 off                  |
| 2        | 1 = Status relay 3 on                   |
| 2        | 0 = Status relay 4 off                  |
| 3        | 1 = Status relay 4 on                   |
| 4*       | 0 = relay 1 switched via bus            |
|          | 1 = relay 1 switched via manual control |
| 5*       | 0 = relay 2 switched via bus            |
| )        | 1 = relay 2 switched via manual control |
| 6*       | 0 = relay 3 switched via bus            |
| <b>0</b> | 1 = relay 3 switched via manual control |
| 7*       | 0 = relay 4 switched via bus            |
|          | 1 = relay 4 switched via manual control |







Software description Modbus RTU V.1.9 | updated 10/2020 Page 7 of 99

## Modbus Function "05 (0x05) Write Single Coil"

## Request

Valid Output Address 0 .. 3

Valid Output Value 0x0000 or 0xFF00

#### Response

Echo of the request

Modbus Function "15 (0x0F) Write Multiple Coils"

## Request

Valid Coil Starting Address 0 .. 3
Valid Quantity of Outputs 1 .. 4
Valid Byte Count 1

Output Value 0 or 1 in Bit0 .. Bit3

| Bit | Information            |
|-----|------------------------|
| 0   | 0 = Status relay 1 off |
|     | 1 = Status relay 1 on  |
| 1   | 0 = Status relay 2 off |
| 1   | 1 = Status relay 2 on  |
| 2   | 0 = Status relay 3 off |
|     | 1 = Status relay 3 on  |
| 3   | 0 = Status relay 4 off |
|     | 1 = Status relay 4 on  |

## Response

Function Code, Starting Address, Quantity of Outputs
Modbus Function "03 (0x03) Read Holding Registers"

# Request

Valid Register Starting Address 0..1 or 66

Valid Quantity of Registers 2 or 1

#### Response

Function Code, Byte Count, Register Values









Software description Modbus RTU

V.1.9 | updated 10/2020

Page 8 of 99

# Values Register 0:

| Bit | Information                             |
|-----|-----------------------------------------|
| 0   | 0 = Status relay 1 off                  |
|     | 1 = Status relay 1 on                   |
| 1   | 0 = Status relay 2 off                  |
| '   | 1 = Status relay 2 on                   |
| 2   | 0 = Status relay 3 off                  |
|     | 1 = Status relay 3 on                   |
| 3   | 0 = Status relay 4 off                  |
| 3   | 1 = Status relay 4 on                   |
| 4   | 0 = relay 1 switched via bus            |
|     | 1 = relay 1 switched via manual control |
| 5   | 0 = relay 2 switched via bus            |
| 5   | 1 = relay 2 switched via manual control |
| 6   | 0 = relay 3 switched via bus            |
|     | 1 = relay 3 switched via manual control |
| 7   | 0 = relay 4 switched via bus            |
|     | 1 = relay 4 switched via manual control |

# Values Register 1:

| Bit | Information                                                            |
|-----|------------------------------------------------------------------------|
| 0   | 0 = Initial state after Reset or communication; monitoring relay 1 off |
|     | 1 = Initial state after Reset or communication; monitoring relay 1 on  |
| 1   | 0 = Initial state after Reset or communication; monitoring relay 2 off |
| '   | 1 = Initial state after Reset or communication; monitoring relay 2 on  |
| 2   | 0 = Initial state after Reset or communication; monitoring relay 3 off |
|     | 1 = Initial state after Reset or communication; monitoring relay 3 on  |
| 3   | 0 = Initial state after Reset or communication; monitoring relay 4 off |
| 3   | 1 = Initial state after Reset or communication; monitoring relay 4 on  |

# Value Register 66:

Time constant for communication monitoring.

Register Value = 0 (0x0000) (default) there is no communication monitoring, all other values are for communication monitoring with a solution of 10 ms.

0x0001 to 0xFFFF => 0.01 to 655.35 seconds = 10.9 minutes









Software description Modbus RTU V.1.9 | updated 10/2020 Page 9 of 99

## Modbus Function "06 (0x06) Write Single Register"

Request

Register Address 0 or 1 or 66

Register Value Bits 0 – 3 according to tables or the

description above

Response

Echo of the request

Modbus Function "16 (0x10) Write Multiple Registers"

Request

Valid Register Starting Address 0 or 1 or 66

Valid Quantity of Registers 1 or 2

Byte Count 2 x Quantity of registers

Registers Value Quantity of registers x 2 Byte

Bits 0 – 3 according to tables

Response

Function Code, Register Starting Address, Quantity of Registers

# Modbus Function "43 /14 (0x2B / 0x0E) Read Device Identification"

Request

Read Device ID code: 0x01 Object ID 0x00

Response

Device ID code 0x01
Conformity level 0x01
More follows 0x00
Next object ID 0x00
Number of objects 0x03
Object ID 0x00
Object Length 0x11

Object Value "METZ CONNECT GmbH"

Object ID 0x01
Object Length 0x06

Object Value "MR-DO4"

Object ID 0x02
Object Length 0x04
Object Value "V1.4"







Software description Modbus RTU

V.1.9 | updated 10/2020

Page 10 of 99

# MR-TO4

# I/O commands

Modbus Function "01 (0x01) Read Coils"

# Request

Valid Coil Starting Address 0 .. 7 Valid Quantity of Outputs 1 .. 8

Response

Byte Count

Output Status Bit0 .. Bit7

| Bit | Information                             |
|-----|-----------------------------------------|
| 0   | 0 = Status Triac 1 off                  |
|     | 1 = Status Triac 1 on                   |
| 1   | 0 = Status Triac 2 off                  |
| '   | 1 = Status Triac 2 on                   |
| 2   | 0 = Status Triac 3 off                  |
|     | 1 = Status Triac 3 on                   |
| 3   | 0 = Status Triac 4 off                  |
|     | 1 = Status Triac 4 on                   |
| 4*  | 0 = Triac 1 switched via bus            |
|     | 1 = Triac 1 switched via manual control |
| 5*  | 0 = Triac 2 switched via bus            |
| )   | 1 = Triac 2 switched via manual control |
| 6*  | 0 = Triac 3 switched via bus            |
| 0   | 1 = Triac 3 switched via manual control |
| 7*  | 0 = Triac 4 switched via bus            |
|     | 1 = Triac 4 switched via manual control |





Software description Modbus RTU

V.1.9 | updated 10/2020

Page 11 of 99

# Modbus Function "05 (0x05) Write Single Coil"

## Request

Valid Output Address 0 .. 3

Valid Output Value 0x0000 or 0xFF00

## Response

Echo of the request

Modbus Function "15 (0x0F) Write Multiple Coils"

## Request

Valid Coil Starting Address 0 .. 3
Valid Quantity of Outputs 1 .. 4
Valid Byte Count 1

Output Value 0 or 1 in Bit0 .. Bit3

| Bit | Information            |
|-----|------------------------|
| 0   | 0 = Status Triac 1 off |
|     | 1 = Status Triac 1 on  |
| 1   | 0 = Status Triac 2 off |
| l I | 1 = Status Triac 2 on  |
| 2   | 0 = Status Triac 3 off |
|     | 1 = Status Triac 3 on  |
| 3   | 0 = Status Triac 4 off |
|     | 1 = Status Triac 4 on  |

## Response

Function Code, Starting Address, Quantity of Outputs







V.1.9 | updated 10/2020

Page 12 of 99

Modbus-Function "03 (0x03) Read Holding Registers"

Modbus-Function "06 (0x06) Write Single Register"

Modbus-Function "16 (0x10) Write Multiple Registers"

| Holding | Registers                                                                                                                                                               |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Adresse | Beschreibung                                                                                                                                                            |
| 0       | Bits 0-3 contain Coils 0-3,<br>Bits 4-7 contain Coils 4-7 (Read only)                                                                                                   |
| 1       | Bits 0-3 contain the basic setting for Coils 0-3,<br>Factory setting 0,<br>Storage in EEPROM                                                                            |
| 2 – 5   | Operating modes of the Triac outputs  0: Direct control via Modbus  1: Impulse generator with variable period and duration  Factory setting 0, Storage in EEPROM        |
| 6 – 9   | Basic settings of the pulse durations  Data type unsigned int16, Resolution, unit: per mil of the pulse period, Value range 01000, Factory setting 0, Storage in EEPROM |
| 10 – 13 | Pulse period  Data type unsigned int16, Resolution, unit: 10 ms  Value range 065535 for 0655.35 s, Factory setting 0, Storage in EEPROM                                 |
| 14 – 17 | Current pulse duration  Data type unsigned int16, Resolution, unit: per mil of the pulse period, Value range 01000, is loaded from register 6-9 at power-on             |







Software description Modbus RTU V.1.9 | updated 10/2020 Page 13 of 99

| Holding                                                                                                                                                   | Holding Registers                                                                                                                          |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|
| Adresse                                                                                                                                                   | Beschreibung                                                                                                                               |  |
| 66                                                                                                                                                        | Time constant for connection monitoring                                                                                                    |  |
|                                                                                                                                                           | At timeout the basic setting is stored in the registers 0 and 14-17. The time starts anew with each valid message addressed to the device. |  |
| Data type unsigned int16, Resolution, unit: 10 ms, Factory setting 0 (monitoring off), Maximum 65535 (= 655.35 seconds = 10.9 minutes), Storage in EEPROM |                                                                                                                                            |  |

# Modbus Function "43 /14 (0x2B / 0x0E) Read Device Identification"

## Request

| Read Device ID code: | 0x01 |
|----------------------|------|
| Object ID            | 0x00 |

# Response

| Device ID code    | 0x01 |
|-------------------|------|
| Conformity level  | 0x01 |
| More follows      | 0x00 |
| Next object ID    | 0x00 |
| Number of objects | 0x03 |
| Object ID         | 0x00 |
| Object Length     | 0x11 |

Object Value "METZ CONNECT GmbH"

Object ID 0x01
Object Length 0x06
Object Value "MR-TO4"
Object ID 0x02

Object Length 0x04
Object Value "V1.5"







Software description Modbus RTU V.1.9 | updated 10/2020 Page 14 of 99

# MR-DI4 / MR-DI4-IP

# Modbus Function "02 (0x02) Read Discrete Inputs"

Request

Valid Input Starting Address 0 .. 3 Valid Quantity of Inputs 1 .. 4

Response

Byte Count

Input Status Bit 0... Bit 3... Bit 3..

**Information** 

1= Status input closed0= Status input open

#### Modbus Function "04 (0x04) Read Input Registers"

Request

Valid Register Starting Address 0
Valid Quantity of Registers 1

Response

Byte Count 2

Values Register Input Status Bit 0..3

Modbus Function "43 /14 (0x2B / 0x0E) Read Device Identification"

Request

Read Device ID code: 0x01 Object ID 0x00

Response

Device ID code 0x01
Conformity level 0x01
More follows 0x00
Next object ID 0x00
Number of objects 0x03
Object ID 0x00
Object Length 0x11

Object Value "METZ CONNECT GmbH"

Object ID 0x01
Object Length 0x06
Object Value "MR-DI4"
Object ID 0x02
Object Length 0x04
Object Value "V1.4"







Software description Modbus RTU V.1.9 | updated 10/2020 Page 15 of 99

# MR-DI10

## Modbus Function "02 (0x02) Read Discrete Inputs"

#### Request

Valid Input Starting Address 0 .. 9
Valid Quantity of Inputs 1 .. 10

Response

Byte Count 1 or 2 Input Status Bit0 .. Bit9

#### Information

1= Status input closed0= Status input open

#### Modbus Function "04 (0x04) Read Input Registers"

#### Request

Valid Register Starting Address 0
Valid Quantity of Registers 1

## Response

Byte Count 2

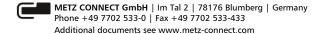
Values Register Input Status Bit 0..9

#### Modbus Function "43 /14 (0x2B / 0x0E) Read Device Identification"

#### Request

Read Device ID code: 0x01 Object ID 0x00

## Response


Device ID code 0x01
Conformity level 0x01
More follows 0x00
Next object ID 0x00
Number of objects 0x03
Object ID 0x00
Object Length 0x11

Object Value "METZ CONNECT GmbH"

Object ID 0x01
Object Length 0x07

Object Value "MR-DI10"

Object ID 0x02
Object Length 0x04
Object Value "V1.4"









Software description Modbus RTU V.1.9 | updated 10/2020 Page 16 of 99

# MR-SI4

#### I/O functions

#### Modbus Function "02 (0x02) Read Discrete Inputs"

# Request

Valid Input Starting Address 0 .. 3 Valid Quantity of Inputs 1 .. 4

Response

Byte Count

Input Status Bit 0... Bit 3... Bit 3..

#### Information

1= Status input closed0= Status input open

## Modbus Function "04 (0x04) Read Input Registers"

#### Request

Valid Register Starting Address 0
Valid Quantity of Registers 21

Response

Byte Count 2

Values Register Input Status Bit 0..3

#### Counter functions

The following functions are used to read or write the registers. The valid address ranges are indicated in brackets.

"04 (0x04) Read Input Registers" (0-20)
"03 (0x03) Read Holding Registers" (0-43)
"06 (0x06) Write Single Register" (20-43)
"06 (0x06) Write Single Register" (65)
"16 (0x10) Write Multiple Registers (0-43, 65)

For long data types with a length of several registers, these registers are listed directly one after the other and the one with the highest value is indicated first. This data can only be transmitted as complete set.





Software description Modbus RTU

V.1.9 | updated 10/2020

Page 17 of 99

| Input Reg | Input Register (Read-Only) |                                       |  |
|-----------|----------------------------|---------------------------------------|--|
| Address   | Name                       | Description                           |  |
| 0 – 11    | IZ                         | Pulse counter                         |  |
|           |                            | Data type uint48_t (3 registers each) |  |
| 12 – 19   | BZ                         | Calculated counter reading            |  |
|           |                            | Data type uint32_t (2 registers each) |  |
| 20        | INPUT                      | Bits 0-3 include Discrete Input 0-3   |  |

| Holding F | Holding Register |                                                           |  |
|-----------|------------------|-----------------------------------------------------------|--|
| Address   | Name             | Description                                               |  |
| 0 – 11    | IT               | Copy of the pulse counter after having pressed the key    |  |
|           |                  | Data type uint48_t (3 registers each) (EEPROM)            |  |
| 12 – 19   | AZ               | Initial counter reading                                   |  |
|           |                  | Data type uint32_t (2 registers each)                     |  |
|           |                  | Factory setting 0 (EEPROM)                                |  |
| 20 – 23   | IE               | Pulses per unit                                           |  |
|           |                  | Data type uint16_t (1 register each)                      |  |
|           |                  | Factory setting 1 (EEPROM)                                |  |
| 24 – 27   | WI               | Transformation factor for current                         |  |
|           |                  | Data type uint16_t (1 register each)                      |  |
|           |                  | Factory setting 1 (EEPROM)                                |  |
| 28 – 31   | WU               | Transformation factor for voltage                         |  |
|           |                  | Data type uint16_t (1 register each)                      |  |
|           |                  | Factory setting 1 (EEPROM)                                |  |
| 32 – 35   | WP               | Operating mode for calculation with transformation factor |  |
|           |                  | Data type uint16_t (1 register each, only Bit 0 is valid) |  |
|           |                  | Value range 01, see below                                 |  |
|           |                  | Factory setting 0 (EEPROM)                                |  |
| 36 – 39   | ZS               | Format of the counter digit display                       |  |
|           |                  | Data type uint16_t (1 register each) (EEPROM)             |  |
|           |                  | High-Byte for counter digits,                             |  |
|           |                  | Value range 09, factory setting 7,                        |  |
|           |                  | higher values are limited to 9.                           |  |
|           |                  | Low-Byte for places after the decimal point,              |  |
|           |                  | Value range 03, factory setting 1,                        |  |
|           |                  | higher values are limited to 3.                           |  |
| 40 – 43   | TA               | Flag for key activation                                   |  |
|           |                  | Data type uint16_t (1 register each, only Flag in Bit 0)  |  |
|           |                  | 0: key is blocked, 1: key is operational                  |  |
|           |                  | Factory setting 1 (EEPROM)                                |  |
| 65        | Bit rate         | Codes for bit rate and Parity                             |  |
|           |                  | Factory setting 19200 bit/s, Even Parity (EEPROM)         |  |









Software description Modbus RTU

V.1.9 | updated 10/2020

Page 18 of 99

# Operating mode for calculation with transformation factor

In the WP register, there is a code 0...1 that determines, together with the transformation factors WI and WU, the way how they are included in calculation. WP, WI and WU depend on whether the transformers are switched by the counters, whether the counter indicates the consumption in a primary or secondary way and whether the emitted pulses correspond primarily or secondarily to the consumption.

A difference must be made between the following electricity meter types:

# Type 1: Directly measuring counter, display: primary, pulse: primary

Note: Indicates the real consumption

Species: DIN rail counter with mechanical drum-type

counting mechanism, Ferraris counter

Formula type: WP = 0Factors: WI = WU = 1

$$IZ - IT$$
  
BZ = ( ----- + AZ ) · WI · WU , BZ = counter reading = consumption  $IE$ 

# Type 2: Transformer counter, display: primary, pulse: secondary

Note: Indicates the real consumption Species: counter with LCD display

Formula type: WP = 1

Factors: WI and WU correspond to the transformers

$$IZ - IT$$
  
BZ = ( ----- · WI · WU ) + AZ , BZ = counter reading = consumption

# Type 3: Transformer counter, display: primary, pulse: primary

Note: Indicates the real consumption

Species: counter with LCD display, multi-function counters

Formula type: WP = 0Factors: WI = WU = 1

$$IZ - IT$$
  $BZ = (----- + AZ) \cdot WI \cdot WU$  ,  $BZ = counter\ reading = consumption$   $IE$ 

## Type 4: Transformer counter, display: secondary, pulse: secondary

Note: Indicates the consumption reduced

by the transformation factors

Species: DIN rail counter with mechanical drum-type

counting mechanism, Ferraris counter

Formula type: WP = 0







Software description Modbus RTU

V.1.9 | updated 10/2020

Page 19 of 99

Consumption and display of the transformer counter are different. Both can be calculated using a different configuration (WI, WU).

Factors: WI = WU = 1:

The calculated counter reading corresponds to the

display of the transformer counter.

Species: DIN rail counter with mechanical drum-type

counting mechanism, Ferraris counter.

$$IZ - IT$$
  
BZ = ( ----- + AZ ) · WI · WU , BZ = counter reading or consumption

# Start of operation

The user reads on site the initial count from the electricity meter and presses the key on the MR-SI4. After this key press, the pulse counter of register IZ is copied into register IT. Afterwards, the user configures the MR-SI4 via the Modbus using a service program. The following must be entered:

- initial counter reading from the counter
- pulses per unit,
  - e.g. indication on the electricity meter 2000 pulses per kWh
- formula type for calculation with transformation factors
- factor for current transformation,
  - e.g. indication on the transformer 200/5A  $\rightarrow$  factor = 40
- factor for voltage conversion,
  - e.g. indication on the transformer 20000/100V  $\rightarrow$  factor = 200
- number of digits and places after the decimal point
- deactivate the key to protect the IT register

#### **Details for calculation**

The calculated counter reading should behave exactly as the electricity meter. This requires that there should be no overflows and rounding errors for the intermediate results. Therefore, particularly large data types are used for counting and calculation

Every 60 milliseconds, a pulse can be emitted by the electricity meter. This results in up to 1,440,000 pulses per day or about 526,000,000 pulses per year.

If the pulse counter was realized with 4 bytes, it could be count to 4,294,967,295. At highest pulse frequency, this would be enough for approx. 8.2 years.

Therefore it is provided with 6 bytes and cannot overflow.









Software description Modbus RTU

V.1.9 | updated 10/2020

Page 20 of 99

The number of places after the decimal point is considered as an additional multiplier with a power of ten during the calculation. Furthermore, it determines the place of the decimal point in the display of BZ and AZ.

As for the electricity counter which only has a specified number of decimal places, the number of places is limited with the last step in the calculation. This is why the calculated counter reading of the MR-SI4 overflows to 0 as often as the counter reading of the electricity meter.

## Calculated counter reading if WP = 0:

# Calculated counter reading if WP = 1:

#### Modbus Function "43 /14 (0x2B / 0x0E) Read Device Identification"

#### Request

| Read Device ID code: | 0x01 |
|----------------------|------|
| Object ID            | 0x00 |

#### Response

| Device ID code    | 0x01 |
|-------------------|------|
| Conformity level  | 0x01 |
| More follows      | 0x00 |
| Next object ID    | 0x00 |
| Number of objects | 0x03 |
| Object ID         | 0x00 |
| Object Length     | 0x11 |

Object Value "METZ CONNECT GmbH"

Object ID 0x01
Object Length 0x06
Object Value "MR-SI4"
Object ID 0x02
Object Length 0x04
Object Value "V2.1"







Software description Modbus RTU

V.1.9 | updated 10/2020

Page 21 of 99

# MR-DIO4/2 / MR-DIO4/2S MR-DIO4/2-IP

## **Modbus Functions**

The following functions serve to read and write the registers. Valid adressranges are written in brackets, but depending on the operating mode not all registers have a function.

Read Discrete Inputs (0 - 15)
Read Input Registers (0)

Read Coils (0 - 15)
Write Single Coil (0 - 15)
Write Multiple Coils (0 - 15)

Read Holding Registers (0 - 17, 65 - 66) Write Single Register (0 - 17, 65, 66) Write Multiple Registers (0 - 17, 65, 66)

## **Modbus Register**

The purpose of the registers is briefly described here. A more detailed description follows below. In operating modes for fire dampers the registers are read and updated with a cycle of 100ms.

| Discr | Discrete Inputs (Read-Only) |                                                                         |  |
|-------|-----------------------------|-------------------------------------------------------------------------|--|
| Adr.  | Name                        | Description                                                             |  |
| 0     | Input_1                     | Input switching state 14,                                               |  |
| 1     | Input_2                     | Values: 0: Off, 1: On                                                   |  |
| 2     | Input_3                     |                                                                         |  |
| 3     | Input_4                     |                                                                         |  |
| 8     | Fault_1                     | Collecting error in channel 1/2 with operating mode Fire_Damper:        |  |
| 9     | Fault_2                     | The following single error bits are summarized here.                    |  |
| 10    | FaultRun_1                  | Single error Runtime_Error in channel 1/2 in the Fire_Damper            |  |
| 11    | FaultRun_2                  | operating mode: Damper movement took too long.                          |  |
| 12    | FaultMan_1                  | Single error manipulation in channel 1/2 in the Fire_Damper             |  |
| 13    | FaultMan_2                  | operating mode: Both limit switches are switched on simultaneously.     |  |
| 14    | FaultCom_1                  | Single error Update_Error in channel 1/2 with operating mode            |  |
| 15    | FaultCom_2                  | Fire_Damper: No communication came from the Modbus master for too long. |  |









V.1.9 | updated 10/2020

Page 22 of 99

| Input Registers (Read-Only) |          |                                      |
|-----------------------------|----------|--------------------------------------|
| Adr.                        | Name     | Description                          |
| 0                           | InputReg | Bits 015 include Discrete Inputs 015 |

| Coils |              |                                                                                                    |
|-------|--------------|----------------------------------------------------------------------------------------------------|
| Adr.  | Name         | Description                                                                                        |
| 0     | Relay_1      | Read: Actual switching state of relay 12                                                           |
| 1     | Relay_2      | Write: Intended switching state of relay 12 Values: 0: off, 1: on                                  |
| 2     | Hand_1       | Read: Cause of the switching state of relay 12                                                     |
| 3     | Hand_2       | Write: Values: 0: Modbus, 1: Toggle switch No manual operation for Motorized and LimitSwitch modes |
| 4     | RelaySet_1   | Read: Intended switching state of relay 12                                                         |
| 5     | RelaySet_2   | Write: Intended switching state of relay 12 Values: 0: off, 1: on                                  |
| 8     | FaultReset_1 | Read: 1: remains until the errors are reset, 0: after                                              |
| 9     | FaultReset_2 | Write: 0: no function, 1: reset all errors Only for Fire_Damper mode                               |

| Holdi | Holding Registers |                                                                                                                                                |  |
|-------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Adr.  | Name              | Description                                                                                                                                    |  |
| 0     | OutputReg         | Read: Bits 015 = Coils 015 Write: Bits 01 = Intended switching state of relay 12 Bits 89 = Clear alarm if the bit is set                       |  |
| 1     | RelayDefault      | Bits 01 contain the basic setting for relay 12,<br>Factory setting 0, storage in EEPROM,<br>with Direct_Control and Fire_Damper operating mode |  |
| 2     | OperMode_1        | Operating mode for channel 12,                                                                                                                 |  |
| 3     | OperMode_2        | Values 06 see below, Factory setting 0, storage in EEPROM                                                                                      |  |
| 4     | DriveTime_1       | Maximum duration of fire damper opening,                                                                                                       |  |
| 5     | DriveTime_2       | Values: 06553.5 seconds, resolution 0.1 seconds, Factory setting 240 seconds, storage in EEPROM                                                |  |
| 6     | TurnOffTime_1     | Maximum time for closing the fire damper,                                                                                                      |  |
| 7     | TurnOffTime_2     | Values: 06553.5 seconds, resolution 0.1 seconds, Factory setting 35 seconds, storage in EEPROM                                                 |  |









Software description Modbus RTU

V.1.9 | updated 10/2020

Page 23 of 99

| Hold | Holding Registers |                                                                                                                                                     |  |
|------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Adr. | Name              | Description                                                                                                                                         |  |
| 8    | RcvHeartBeat_1    | Maximum duration between write accesses to ActuDrive_12,                                                                                            |  |
| 9    | RcvHeartBeat_2    | Values: 06553.5 seconds, resolution 0.1 seconds, Factory setting 0 seconds, storage in EEPROM                                                       |  |
| 10   | ActuDrive_1       | The position of the fire damper is controlled,                                                                                                      |  |
| 11   | ActuDrive_2       | values: open (1), close (2)                                                                                                                         |  |
| 12   | ActuPos_1         | The position of the fire damper is reported,                                                                                                        |  |
| 13   | ActuPos_2         | Values: open (1), close (2), running (3).                                                                                                           |  |
| 14   | ActuPos_1a        | The position of the second fire damper is reported,                                                                                                 |  |
| 15   | ActuPos_2a        | values: inactive (0), open (1), close (2)                                                                                                           |  |
| 16   | AlarmCode_1       | Alarm codes are reported and reset,                                                                                                                 |  |
| 17   | AlarmCode_2       | Values: OK (1), Runtime_Error (3), Manipulation (4), Update_Error (5), Alarm (6), Alarm_a (7)                                                       |  |
| 65   | BaudCode          | Codes for baud rate and parity, Factory setting 19200 Baud, even Parity, Non-volatile stored in EEPROM.                                             |  |
|      |                   | Bit 0-3: Code for the baud rate.<br>Code 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08<br>Baud 1200 2400 4800 9600 19200 38400 57600 115200               |  |
|      |                   | Bit 4-7: Code for parity. Code 0x10 0x20 0x30 Parity Even Odd None                                                                                  |  |
|      |                   | Bit 8-15: Value 0x53 enables modification with the commands Write single/multiple register. Then write this register as the only one.               |  |
| 66   | BusTimeout        | Time constant for connection monitoring with Direct_Control mode Values 0: inactive 165535: 0.01655.35 seconds Factory setting 0, storage in EEPROM |  |





V.1.9 | updated 10/2020

Page 24 of 99

# Overview of the operating modes

In register OperMode\_1...2 the operating mode of the respective channel is set. Channel 1: Input 1...2 and relay 1, channel 2: Input 3...4 and relay 2.

| Wert | Name                   | Description                                                                  |
|------|------------------------|------------------------------------------------------------------------------|
| 0    | Direct_Control         | Direct control of inputs and outputs, Factory setting                        |
| 1    | Motorized_SafetyOpen   | motorized fire damper, safe position open (smoke extraction flap)            |
| 2    | Motorized_SafetyClose  | motorized fire damper, safe position closed                                  |
| 3    | LimitSwitch_Open_Close | mechanical fire protection flap with OPEN and CLOSE limit switch             |
| 4    | LimitSwitch_Open       | 2 mechanical fire protection flaps only with OPEN limit switch (NO contact)  |
| 5    | LimitSwitch_Close      | 2 mechanical fire protection flaps only with CLOSE limit switch (NC contact) |
| 6    | Fire_Damper            | motorized fire damper                                                        |

# Operating mode Direct\_Control

The status of the digital inputs is reported (Input-Register InputReg).

The relay is controlled via the Modbus (Holding-Register OutputReg) and the toggle switches. The toggle switches have priority.

There is no link between the inputs and the relay.

After switching on or after the connection monitoring has been completed (Holding Register BusTimeout), the default setting of the relay is valid (Holding Register RelayDefault).

The connection to the Modbus Master can be monitored with a watchdog timer. If the master or the connection fails, the outputs are switched to their basic state (safe state) and the red LED lights up. The timer restarts with every valid message addressed to the device. Only the device address is important, not the rest of the message content.







V.1.9 | updated 10/2020

Page 25 of 99

# Operating mode Fire Damper for fire dampers

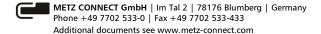
The status of the digital inputs is reported (Input-Register InputReg). The limit switches (normally open contact) of the flaps are connected to the inputs.

The relay is controlled via the Modbus (Holding-Register OutputReg) and the toggle switches. The toggle switches have priority. The relay switches the motor of the damper. When it is on, the damper is opened, when it is off, the damper closes.

The inputs and the error messages do not influence the relay.

The relay's basic setting (RelayDefault holding register) only applies after switching on.

The fire dampers are connected as follows:


| Fire damper 1 |                    | Fire damper 2 |                    |
|---------------|--------------------|---------------|--------------------|
| Input 1       | Limit switch OPEN  | Input 3       | Limit switch OPEN  |
| Input 2       | Limit switch CLOSE | Input 4       | Limit switch CLOSE |
| Relay 1       | Motor              | Relay 2       | Motor              |

To support commissioning and maintenance, there is an error monitoring (Register InputReg and OutputReg). Only one of the single errors listed below is reported, after that the error detection is disabled. The collective error is reported at the same time as the individual error. The error is acknowledged by the Modbus Master by setting FaultReset 1...2.

The error FaultRun\_1...2 is reported when the adjustable maximum time for opening (DriveTime\_1...2) or closing (TurnOffTime\_1...2) the damper is exceeded. The time measurement starts when the relay is switched. Only outside the time measurement the position of the flaps is checked by means of the limit switches and the error is reported if the position is not as expected. The check can be switched off with the time constant 0. With manual operation the check is also switched off.

The error **FaultMan**\_1...2 is reported if both limit switches are switched on at the same time.

The error FaultCom\_1...2 is reported when the adjustable maximum time between Modbus commands is exceeded. This allows connection monitoring to be implemented. The timer restarts with every valid message addressed to the device. Only the device address is important, not the rest of the message content. The timer can be switched off with the time constant 0.







METZ
CONNECT
We realize ideas

Software description Modbus RTU

V.1.9 | updated 10/2020

Page 26 of 99

#### Operating mode Motorized and LimitSwitch for fire dampers

In these operating modes the relay is also controlled depending on the inputs and the error monitoring.

# Registers for these operating modes

## ActuDrive 1...2

Only for Motorized\_SafetyOpen and Motorized\_SafetyClose operating mode. In this register the flap position is controlled.

Values: open (1), close (2), basic setting after reset is the normal position.

## ActuPos\_1...2

Operating modes Motorized\_SafetyOpen, Motorized\_SafetyClose and LimitSwitch Open Close:

In this register the flap position is reported.

The feedback comes from limit switches OPEN1, CLOSE1, OPEN2, CLOSE2 (normally open contact).

Values: open (1), close (2), running (3).

Operating modes LimitSwitch Open and LimitSwitch\_Close:

In this register the damper position is reported.

The feedback comes from limit switches at the inputs OPEN1/CLOSE1, OPEN2/CLOSE2 (normally open contact for LimitSwitch\_Open, normally closed contact for LimitSwitch Close).

Values: open (1), close (2).

#### ActuPos 1a...2a

Operating modes Motorized\_SafetyOpen, Motorized\_SafetyClose and LimitSwitch Open Close:

Values: inactive (0).

Operating modes LimitSwitch Open and Limit Switch Close:

In this register the position of the second fire damper is reported.

The feedback comes from limit switches at the inputs OPEN1a/ZU1a, OPEN2a/ZU2a (normally open contact for LimitSwitch\_Open, normally closed contact for LimitSwitch Close).

Values: open (1), close (2).

#### AlarmCode 1...2

Error conditions are reported in this register. The first error code (3...7) remains stored until it is eliminated, only then another error message is possible.

The values and resetting of errors are described below.









V.1.9 | updated 10/2020

Page 27 of 99

Values for Motorized\_SafetyOpen and Motorized\_SafetyClose operating mode: OK (1), Runtime Error (3), Manipulation (4), Update Error (5), Alarm (6).

Values for LimitSwitch\_Open\_Close mode: OK (1), Manipulation (4), Alarm (6).

Values for operating modes LimitSwitch\_Open and LimitSwitch\_Close: OK (1), alarm (6) for inputs OPEN1/CLOSED1, OPEN2/CLOSED2, Alarm\_a (7) for inputs OPEN1a/ZU1a, OPEN2a/ZU2a. Alarm (6) has priority over Alarm a (7) if both flaps are in fire position.

#### DriveTime\_1...2

Only for Motorized\_SafetyOpen and Motorized\_SafetyClose operating mode. In this register the maximum time for opening the flap is set. In case of timeout the alarm code Runtime\_Error is reported. At value 0 the time measurement is switched off. Values: 0...6553.5 seconds, resolution 0.1 seconds, factory setting 240 seconds.

# TurnOffTime 1...2

Only for Motorized\_SafetyOpen and Motorized\_SafetyClose operating mode. In this register, the maximum time for closing the flap is set. In case of timeout the alarm code Runtime\_Error is reported. At value 0 the time measurement is switched off. Values: 0...6553.5 seconds, resolution 0.1 seconds, factory setting 35 seconds.

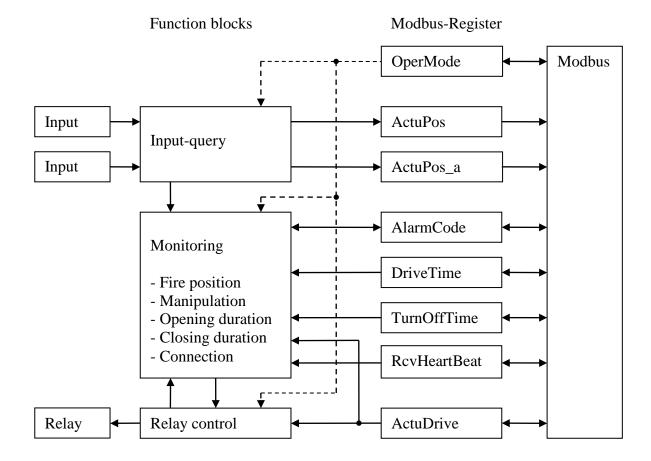
#### RcvHeartBeat\_1...2

Only for Motorized\_SafetyOpen and Motorized\_SafetyClose operating mode. This register defines the maximum time between write accesses to ActuDrive\_1...2 is set. With this a connection monitoring can be realized. In case of timeout the alarm code Update\_Error is reported. If the value is 0, the time measurement is switched off. Values: 0...6553.5 seconds, resolution 0.1 seconds, factory setting 0 seconds.










V.1.9 | updated 10/2020

Page 28 of 99

# Overview of operating modes for fire dampers

Both channels are equal, their numbers are omitted in the image.









V.1.9 | updated 10/2020

Page 29 of 99

## Limit switch of fire dampers

The limit switches are connected to the input terminals as follows

| Terminal | Flap    | Modes Motorized_SafetyOpen, Motorized_SafetyClose, LimitSwitch_Open_Close (each NO contact) | Flap             | Modes LimitSwitch_Open (Schließer-Kontakt), LimitSwitch_Close (each NC contact) |
|----------|---------|---------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------|
| 1 – C1   | OPEN1   | Flap 1 open                                                                                 | OPEN1/ CLOSED1   | Flap 1                                                                          |
| 2 – C1   | CLOSED1 | Flap 1 closed                                                                               | OPEN1a/ CLOSED1a | Flap 1a                                                                         |
| 3 – C1   | OPEN2   | Flap 2 open                                                                                 | OPEN2/ CLOSED2   | Flap 2                                                                          |
| 4 – C1   | CLOSED2 | Flap 2 closed                                                                               | OPEN2a/ CLOSED2a | Flap 2a                                                                         |

The operating modes LimitSwitch\_Open and LimitSwitch\_Close differ only in their names, the MR-DIO42 behaves identically in both.

- When the flap is completely open the contact is closed.
- When the flap is completely closed the contact is open.
- If the flap is partially open, the state of the corresponding end position applies.

## Fire position

The fire position is derived from the limit switches depending on the operating mode.

| Mode                   | Fire-Position if           |
|------------------------|----------------------------|
| Motorized_SafetyClose  | Flap not OPEN              |
| Motorized_SafetyOpen   | Flap not CLOSED            |
| LimitSwitch_Open_Close | Flap not OPEN              |
| LimitSwitch_Open       | At least one Flap not OPEN |
| LimitSwitch_Close      | At least one Flap CLOSED   |

If the position of the flap is the fire position and no other alarm code is reported yet, an alarm is reported in the alarm code register.

With the LimitSwitch\_Open and LimitSwitch\_Close operating modes, an alarm is reported for the first damper or Alarm\_a for the second damper. Alarm has priority over Alarm\_a.

In the operating modes Motorized\_SafetyOpen and Motorized\_SafetyClose there is a self-holding in the safe position via the fire position. The relay is then switched to the safe state. To move the fire damper to the normal position, the normal position is first written









V.1.9 | updated 10/2020

Page 30 of 99

to ActuDrive and then AlarmCode is reset to OK. Then the alarm reset begins, in which the self-holding is interrupted.

#### Error detection and alarm codes

There are 3 sources of error, which are reported as an alarm code and partly lead to an automatic control of the motorized fire damper.

#### **Runtime Error**

(Operating mode Motorized SafetyOpen, Motorized SafetyClose)

The time during which the flap opens or closes can be measured. If the allowed time is exceeded, this error is reported.

The time measurement with DriveTime\_1...2 starts when the relay is switched on (flap opens) and ends when the limit switches report the OPEN position.

Timing with TurnOffTime\_1...2 starts when the relay is switched off (close damper) and ends when the limit switches report the CLOSED position.

The 2 time measurements can be switched off individually with the value 0. An error remains stored, the relay then switches to the safe position.

Possible causes: Flap jammed, limit switch defective, input for limit switch defective, cable to limit switch interrupted, cable to motor interrupted, motor defective.

#### Manipulation

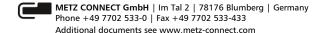
(Operating mode Motorized\_SafetyOpen, Motorized\_SafetyClose, LimitSwitch\_Open\_Close)

If both limit switches are switched on at the same time, this error is reported. In ActuPos 1...2 the value running is reported simultaneously.

An error remains stored, the relay is then switched off.

Possible causes: Limit switch defective, input for limit switch defective, cable to limit switch short-circuited.

#### **Update Error**


(Operating mode Motorized SafetyOpen, Motorized SafetyClose)

The time interval of write accesses to ActuDrive\_1...2 can be monitored. If the allowed duration (RcvHeartBeat\_1...2) is exceeded, this error is reported.

The monitoring also starts if the error is reset or RcvHeartBeat is set unequal 0.

The time measurement can be switched off with the value 0.

An error remains stored, the relay then switches to the safe position.







METZ
CONNECT
We realize ideas

Software description Modbus RTU

V.1.9 | updated 10/2020

Page 31 of 99

Possible causes: Remote station on bus out of order, bus connection interrupted (e.g. cable, repeater, switch).

#### Several simultaneous errors

Even if several errors are present simultaneously on one channel, only the error handling for the first detected error is performed. Only after this error has been confirmed by resetting it to OK (alarm reset) can another error be detected.

#### Fire damper (Motorized SafetyClose)

Depending on Alarm-Reset, Fire-Position, ActuDrive\_1...2 and the error state the relay is switched as follows (evaluation from top to bottom)

| others        | ActuDrive_12 | AlarmCode_12      | Relay 12 |
|---------------|--------------|-------------------|----------|
| Alarm-Reset   | open (1)     | OK (1)            | On       |
| Fire-Position | any          | any               | Off      |
| -             | any          | Runtime_Error (3) | Off      |
|               | any          | Update_Error (5)  | Off      |
|               | any          | Manipulation (4)  | Off      |
|               | open (1)     | OK (1)            | On       |
|               | close (2)    | OK (1)            | Off      |

Initialization after power on / reset:

ActuDrive is set to open. AlarmCode is set to OK. The alarm reset starts to interrupt the self-retaining over fire position in safe state.

## Smoke extraction flap (Motorized\_SafetyOpen)

Depending on Alarm-Reset, Fire-Position, ActuDrive\_1...2 and the error state the relay is switched as follows (evaluation from top to bottom)

| others        | ActuDrive_12 | AlarmCode_12      | Relay 12 |
|---------------|--------------|-------------------|----------|
| Alarm-Reset   | close (2)    | OK (1)            | Off      |
| Fire-Position | any          | any               | On       |
| -             | any          | Runtime_Error (3) | On       |
|               | any          | Update_Error (5)  | On       |
|               | any          | Manipulation (4)  | Off      |
|               | open (1)     | OK (1)            | On       |
|               | close (2)    | OK (1)            | Off      |

Initialization after power on / reset:

ActuDrive is set to close. AlarmCode is set to OK. The alarm reset starts to interrupt the self-retaining over fire position in safe state.





Page 32 of 99



Software description Modbus RTU V.1.9 | updated 10/2020

# Control of the relays

In Motorized\_SafetyOpen and Motorized\_SafetyClose mode the relay is controlled as described in the previous chapters.

In LimitSwitch\_Open\_Close, LimitSwitch\_Open and LimitSwitch\_Close mode the relay is permanently switched off.

## Modbus Function "43 /14 (0x2B / 0x0E) Read Device Identification"

#### Request

Read Device ID code: 0x01 Object ID 0x00

#### Response

Device ID code 0x01
Conformity level 0x01
More follows 0x00
Next object ID 0x00
Number of objects 0x03
Object ID 0x00
Object Length 0x11

Object Value "METZ CONNECT GmbH"

Object ID 0x01

Object Length 0x09 0x0E

Object Value "MR-DIO4/2" "MR-DIO4/2IP65"

Object ID 0x02
Object Length 0x04
Object Value "V1.7"







Software description Modbus RTU

V.1.9 | updated 10/2020

Page 33 of 99

# MR-TP

#### I/O commands

#### Modbus Function "02 (0x02) Read Discrete Inputs"

Request

Valid Input Starting Address 0 .. 15 Valid Quantity of Inputs 1 .. 16

Response

Byte Count 1...2

Input Status Bit0 .. Bit15

Information

Discrete Input 0-5: switching status of the digital inputs,

0: OFF, 1: ON

Discrete Input 6-7: feedback of transistor outputs,

0: OFF, 1: ON

Discrete Input 8-9: feedback of switching status of relay 1,

0: Off, 2: level 1 (open),

3: level 2 (close)

Discrete Input 10-11: Cause of the switching status of relay 1,

for sunblind mode see table of priorities, otherwise 3: trigger switch, 0: Modbus coils

Discrete Input 12-13: feedback of switching status of relay 2,

0: OFF, 2: level 1 (open),

3: level 2 (close)

Discrete Input 14-15: Cause of the switching status of relay 2,

for sunblind mode see table of priorities, otherwise 3: trigger switch, 0: Modbus coils

# Modbus Function "04 (0x04) Read Input Registers"

Request

Valid Register Starting Address 0
Valid Quantity of Registers 1

Response

Byte Count 2

Values Register Bit0 .. Bit15

Information

See information Discrete Input 0-15





Software description Modbus RTU V.1.9 | updated 10/2020 Page 34 of 99

# Modbus Function "01 (0x01) Read Coils"

## Request

Valid Coil Starting Address 0 .. 5 Valid Quantity of Outputs 1 .. 6

Response

Byte Count

Output Status Bit0 .. Bit5

| Bit | Information                      |                                |
|-----|----------------------------------|--------------------------------|
| 0   | 0 = Status digital output 1 off  |                                |
| U   | 1 = Status digital output 1 on   |                                |
| 1   | 0 = Status digital output 2 off  |                                |
|     | 1 = Status digital output 2 on   |                                |
|     | Status relay 1 in "switch" mode: | 0: relay contact 11-14-24 open |
| 2-3 |                                  | 1: relay contact 11-14-24 open |
| 2-3 |                                  | 2: relay contact 11-14 closed  |
|     |                                  | 3: relay contact 11-24 closed  |
|     | Status relay 2 in "switch" mode: | 0: relay contact 31-34-44 open |
| 4-5 |                                  | 1: relay contact 31-34-44 open |
| 4-5 |                                  | 2: relay contact 31-34 closed  |
|     |                                  | 3: relay contact 31-44 closed  |

# Modbus Function "05 (0x05) Write Single Coil"

Request

Valid Output Address 0 .. 5

Valid Output Value 0x0000 or 0xFF00

Response

Echo of request







Software description Modbus RTU V.1.9 | updated 10/2020 Page 35 of 99

# Modbus Function "15 (0x15) Write Multiple Coils"

#### Request

Valid Coil Starting Address 0 .. 5
Valid Quantity of Outputs 1 .. 6
Valid Byte Count 1

Output Value 0 or 1 in Bit0 .. Bit5

| Bit | Information                      |                                |  |
|-----|----------------------------------|--------------------------------|--|
| 0   | 0 = Status digital output 1 off  |                                |  |
| U   | 1 = Status digital output 1 on   |                                |  |
| 1   | 0 = Status digital output 2 off  |                                |  |
| 1   | 1 = Status digital output 2 on   |                                |  |
|     | Status relay 1 in "switch" mode: | 0: relay contact 11-14-24 open |  |
| 2-3 |                                  | 1: relay contact 11-14-24 open |  |
| 2-3 |                                  | 2: relay contact 11-14 closed  |  |
|     |                                  | 3: relay contact 11-24 closed  |  |
|     | Status relay 2 in "switch" mode: | 0: relay contact 31-34-44 open |  |
| 4-5 |                                  | 1: relay contact 31-34-44 open |  |
| 4-3 |                                  | 2: relay contact 31-34 closed  |  |
|     |                                  | 3: relay contact 31-44 closed  |  |

## Response

Function Code, Starting Address, Quantity of Outputs

# Modbus Function "03 (0x03) Read Holding Registers"

#### Request

Valid Register Starting Address 0 .. 7 or 66 Valid Quantity of Registers 8 or 1

#### Response

Function Code, Byte Count, Register Values

Value Register 0:

Bits 0 – 5 according to the tables or the description above

Bits 6 – 15 have no function

Value Register 1:

Sunblind command (in Low-Byte)

The following registers are stored in the EEPROM.

The time constants have the unit 10 ms:

Value Register 2:

Operating mode (Low-Byte) and Flags (High-Byte)

Factory setting 1, storage in EEPROM







Software description Modbus RTU V.1.9 | updated 10/2020 Page 36 of 99

Value Register 3:

Bits 0-5 contain the basic setting for coils 0-5

Factory setting 0, storage in EEPROM

Value Register 4:

Time constant push-button short/long,

Unit 10 ms, factory setting 2 s, storage in EEPROM

Value Register 5:

Time constant short pulse,

Unit 10 ms, factory setting 0,5 s, storage in EEPROM

Value Register 6:

Time constant long pulse,

Unit 10 ms, factory setting 60 s, storage in EEPROM

Value Register 7:

Time constant rotating pulse (position the blades horizontally),

Unit 10 ms, factory setting 1 s, storage in EEPROM

Value Register 66

Time constant for connection monitoring

Unit 10 ms, factory setting 0 s, storage in EEPROM

Modbus Function "06 (0x06) Write Single Register"

Request

Register Address 0 - 7 or 66

Register Value according to tables or descriptions above

and below

Response

Echo of the request

Modbus Function "16 (0x10) Write Multiple Registers"

Request

Valid Register Starting Address 0 – 7 or 66

Valid Quantity of Registers 1 – 8

Byte Count 2 x Quantity of registers

Registers Value according to tables or descriptions above

and below

Response

Function Code, Register Starting Address, Quantity of Registers



CONNECT

We realize ideas

Software description Modbus RTU

V.1.9 | updated 10/2020

Page 37 of 99

#### **Operating modes**

The operating mode is selected by using the low bits of the operating mode register. The high bits contain more flags for sunblind operation (sunblind 1 / 2).

In all operating modes, a pause of 0.5 seconds of the Off status is included between level 1 and level 2 when the relay outputs are switched.

## Operating mode 0 (Modbus Off)

The digital inputs and transistor outputs are queried and controlled by the Modbus.

The relay outputs are only controlled via the built-in trigger switches.

Function of the trigger switches: Top = level 1, center = OFF, bottom = level 2.

## Operating mode 1 (Switch 0-1-2)

The digital inputs and transistor outputs are queried and controlled by the Modbus.

The relay outputs are controlled by the Modbus or by the built-in trigger switches.

Function of the trigger switches: Top = OFF, center = level 1, bottom = level 2.

## Operating mode 2 (Switch 1-0-2)

The digital inputs and transistor outputs are queried and controlled by the Modbus.

The relay outputs are controlled by the Modbus or by the built-in trigger switches.

Function of the trigger switches: Top = level 1, center = OFF, bottom = level 2.

## Operating mode 3 (Sunblind 1)

Unused digital inputs and transistor outputs are queried and controlled by the Modbus.

The relay outputs and digital inputs are used to control 2 sunblinds.

Used for AC/DC motors with separate coils for opening and closing.

Relay contact 11: operating voltage for motor 1

Relay contact 14: motor and limit switch 1 for opening

Relay contact 24: motor and limit switch 1 for closing

Relay contact 31: operating voltage for motor 2

Relay contact 34: motor and limit switch 2 for opening

Relay contact 44: motor and limit switch 2 for closing

Operating push-buttons and switching contacts are connected to the digital inputs.

Input 1: open sunblind 1

Input 2: close sunblind 1

Input 3: optional wind contact (NC or NO contact)

Input 4: open sunblind 2

Input 5: close sunblind 2

Input 6: optional door contact (NC or NO contact)





CONNECT

We realize ideas

Software description Modbus RTU

V.1.9 | updated 10/2020

Page 38 of 99

## Operating mode 4 (Sunblind 2)

Unused digital inputs and transistor outputs are queried and controlled by the Modbus.

The relay outputs and digital inputs are used to control the sunblind.

Used for a DC motor that changes its direction of movement with polarity.

Relay contact 11: motor limit switches, open +, close -

Relay contact 14: operating voltage + Relay contact 24: operating voltage -

Relay contact 31: motor limit switches, open -, close +

Relay contact 34: operating voltage – Relay contact 44: operating voltage +

Operating push-buttons and switching contacts are connected to the digital inputs.

Input 1: open sunblind Input 2: close sunblind

Input 3: optional wind contact (NC or NO contact)
Input 6: optional door contact (NC or NO contact)

Sunblind operating modes

Function of the trigger switches:

top = level 1 / opening, center = OFF, bottom = level 2 / closing.

| Priorities                 | Priorities of relay control, value is returned with relay status |                              |  |  |  |  |  |  |
|----------------------------|------------------------------------------------------------------|------------------------------|--|--|--|--|--|--|
| Priority Value Description |                                                                  |                              |  |  |  |  |  |  |
| Highest                    | 3                                                                | Trigger switch in the device |  |  |  |  |  |  |
|                            | 2                                                                | Wind and door contact        |  |  |  |  |  |  |
|                            | 1                                                                | Sunblind command             |  |  |  |  |  |  |
| Lowest                     | 0                                                                | Inputs for operating keys    |  |  |  |  |  |  |

When the optional wind contact is activated, the sunblind is opened.

The activation of the wind contact has the same effect as the sunblind command 2.

When the optional door contact is activated, the sunblind is prevented from closing.







Software description Modbus RTU

V.1.9 | updated 10/2020

Page 39 of 99

Different operation modes and time constants can be set for the operation pushbuttons.

| Flag | Flags in operating mode register for sunblind mode |                                                                                                                                   |  |  |  |  |  |  |  |
|------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Bit  | Value                                              | Description                                                                                                                       |  |  |  |  |  |  |  |
| 15   | 0                                                  | No wind contact at input 3                                                                                                        |  |  |  |  |  |  |  |
|      | 1                                                  | Wind contact at input 3                                                                                                           |  |  |  |  |  |  |  |
| 14   | 0                                                  | Wind contact is NO contact                                                                                                        |  |  |  |  |  |  |  |
| ' -  | 1                                                  | Wind contact is NC contact                                                                                                        |  |  |  |  |  |  |  |
| 13   | 0                                                  | No door contact at input 6                                                                                                        |  |  |  |  |  |  |  |
| 15   | 1                                                  | Door contact at input 6                                                                                                           |  |  |  |  |  |  |  |
| 12   | 0                                                  | Door contact is NO contact                                                                                                        |  |  |  |  |  |  |  |
| 12   | 1                                                  | Door contact is NC contact                                                                                                        |  |  |  |  |  |  |  |
|      | 0-3                                                | Short pulse starts with key press                                                                                                 |  |  |  |  |  |  |  |
|      | 0                                                  | Short pulse ends after the time constant "Short"                                                                                  |  |  |  |  |  |  |  |
|      | 1                                                  | Short pulse ends after the minimum of time constant "Short" and key press                                                         |  |  |  |  |  |  |  |
|      | 2                                                  | Short pulse ends after the maximum of time constant "Short" and key press                                                         |  |  |  |  |  |  |  |
| 10-  | 3                                                  | Short pulse ends with key press                                                                                                   |  |  |  |  |  |  |  |
| 8    | 4                                                  | Short pulse starts at the end of key press, ends after the time constant "Short"                                                  |  |  |  |  |  |  |  |
|      | 7                                                  | Pulse lasts as long as key press                                                                                                  |  |  |  |  |  |  |  |
|      | 0-4                                                | Long pulse starts after time constant "pushbutton", ends after time constant "Long" and ends earlier in case of a short key press |  |  |  |  |  |  |  |
|      | 7                                                  | No long pulse                                                                                                                     |  |  |  |  |  |  |  |

Simultaneous control of both sunblinds with the sunblind command register is possible via the bus. The command sequence begins as soon as the register content is changed.

| Cod | Coding of the sunblind commands                                            |  |  |  |  |  |  |
|-----|----------------------------------------------------------------------------|--|--|--|--|--|--|
| 0   | Normal operation, control by operating pushbuttons possible                |  |  |  |  |  |  |
| 1   | Switch off relay, lock control by operation pushbuttons (lock)             |  |  |  |  |  |  |
| 2   | Long pulse for opening, then lock                                          |  |  |  |  |  |  |
| 3   | Long pulse for closing, then lock                                          |  |  |  |  |  |  |
| 4   | Long pulse for closing, then rotating pulse (blades horizontal), then lock |  |  |  |  |  |  |



Page 40 of 99



Software description Modbus RTU

# Modbus Function "43 /14 (0x2B / 0x0E) Read Device Identification"

V.1.9 | updated 10/2020

#### Request

Read Device ID code: 0x01 Object ID 0x00

## Response

Device ID code 0x01
Conformity level 0x01
More follows 0x00
Next object ID 0x00
Number of objects 0x03
Object ID 0x00
Object Length 0x11

Object Value "METZ CONNECT GmbH"

Object ID 0x01
Object Length 0x05
Object Value "MR-TP"
Object ID 0x02
Object Length 0x04
Object Value "V1.2"





Software description Modbus RTU

V.1.9 | updated 10/2020

Page 41 of 99

## MR-AO4

#### I/O commands

Modbus Function "03 (0x03) Read Holding Registers"

Holding Register 0-3: output value of the outputs,

Signed Integer16,

Holding Register 4-7: basic settings of the output values

Request

Valid Register Starting Address 0..7 or 66 Valid Quantity of Registers 1..8 or 1

Response

Byte Count 2 x Quantity of Registers

Values Register 0..7  $0x0000 \text{ to } 0xFFFF \quad (0x7FFF = 10.24 \text{ Volt})$ 

Unit = 10.24V / 215 = 1V / 3200 = 0.3125 mV

Value Register 66

Time constant for communication monitoring.

Register Value = 0 (0x0000) there is no communication monitoring, all other values are for communication monitoring with a solution of 10 ms.

0x0000 to 0xFFFF => 0 to 655.35 seconds = 10.9 minutes

Modbus Function "06 (0x06) Write Single Register"

Request

Valid Register Address 0..7 or 66

Valid Value Register 0..7  $0x0000 \text{ to } 0xFFFF \quad (0x7FFF = 10.24 \text{ Volt})$ 

Valid Value Register 66 0x0000 to 0xFFFF

(0 to 655.35 seconds)

Response

Echo of the request

Modbus Function "16 (0x10) Write Multiple Registers"

Request

Valid Register Starting Address 0..7 or 66 Valid Quantity of Registers 1..8

Valid Byte Count 2 x Quantity of Registers (QoR)

Valid Value Register 0..7 QoR x 0x0000 to 0xFFFF (0x7FFF = 10.24 Volt)

Response

Function Code, Register Starting Address, Quantity of Registers





Software description Modbus RTU V.1.9 | updated 10/2020 Page 42 of 99

## Modbus Function "43 /14 (0x2B / 0x0E) Read Device Identification"

## Request

Read Device ID code: 0x01 Object ID 0x00

## Response

Device ID code 0x01
Conformity level 0x01
More follows 0x00
Next object ID 0x00
Number of objects 0x03
Object ID 0x00
Object Length 0x11

Object Value "METZ CONNECT GmbH"

Object ID 0x01
Object Length 0x06

Object Value "MR-AO4"

Object ID 0x02
Object Length 0x04
Object Value "V1.4"





Software description Modbus RTU

V.1.9 | updated 10/2020

Page 43 of 99

## MR-AOP4

#### I/O commands

Modbus Function "01 (0x01) Read Coils"

Modbus Function "02 (0x02) Read Discrete Inputs" Modbus Function "04 (0x04) Read Input Registers"

Request

Valid Starting Address 0 .. 3 Valid Quantities 1 .. 4

Response

Byte Count 1

0 = automatic mode

Modbus Function "03 (0x03) Read Holding Registers"

Holding Register 0-3: output values of the outputs,

Signed Integer16,

Holding Register 4-7: basic settings of the output values

Request

Valid Register Starting Address 0..7 or 66 Valid Quantity of Registers 1..8 or 1

Response

Byte Count 2 x Quantity of Registers

Values Register 0..7  $0x0000 \text{ to } 0xFFFF \quad (0x7FFF = 10.24 \text{ Volt})$ 

Unit = 10.24V / 215 = 1V / 3200 = 0.3125 mV

Value Register 66

Time constant for communication monitoring.

Register Value = 0 (0x0000) there is no communication monitoring, all other values are for communication monitoring with a solution of 10 ms.

0x0000 to 0xFFFF => 0 to 655.35 seconds = 10.9 minutes

Modbus Function "06 (0x06) Write Single Register"

Request

Valid Register Address 0..7 or 66

Valid Value Register 0..7 0x0000 to 0xFFFF (0x7FFF = 10.24 Volt)

Valid Value Register 66 0x0000 to 0xFFFF

(0 to 655.35 seconds)

Response

Echo of the request







Page 44 of 99



Software description Modbus RTU

We realize ideas

# Modbus Function "16 (0x10) Write Multiple Registers"

#### Request

Valid Register Starting Address 0..7 or 66

Valid Quantity of Registers 1..8

Valid Byte Count 2 x Quantity of Registers (QoR)

Valid Value Register 0..7 QoR x 0x0000 to 0xFFFF (0x7FFF = 10.24 Volt)

V.1.9 | updated 10/2020

## Response

Function Code, Register Starting Address, Quantity of Registers

## Modbus Function "43 /14 (0x2B / 0x0E) Read Device Identification"

## Request

Read Device ID code: 0x01 Object ID 0x00

## Response

Device ID code 0x01
Conformity level 0x01
More follows 0x00
Next object ID 0x00
Number of objects 0x03
Object ID 0x00
Object Length 0x11

Object Value "METZ CONNECT GmbH"

Object ID 0x01 Object Length 0x07

Object Value "MR-AOP4"

Object ID 0x02
Object Length 0x04
Object Value "V1.5"







Software description Modbus RTU V.1.9 | updated 10/2020

Page 45 of 99

# MR-AI8

## I/O commands

# Modbus Function "04 (0x04) Read Input Registers"

Request

Valid Starting Address 0 .. 15

Valid Quantities 1 .. 16 (1 .. 8 inputs)

Response

Byte Count 2 x Quantity o. R.

Registers Values Quantity o. R. x 12 Bytes

| Input | Register | Information                                                        |
|-------|----------|--------------------------------------------------------------------|
| 1     | 0-1      | Measured values are supplied in 2 registers each (4 Bytes).        |
| 2     | 2-3      | Data type in the registers can be configured. (see register 16-23) |
| 3     | 4-5      | ,                                                                  |
| 4     | 6-7      | Float value needs 2 registers (figure 1)                           |
| 5     | 8-9      | Signed in value is in the 1st register                             |
| 6     | 10-11    | Signed in 0 fills the 2 <sup>nd</sup> register                     |
| 7     | 12-13    | Value remains 0 until a measurement takes place                    |
| 8     | 14-15    | Data types composed from 2 registers start at an even address      |

Figure 1

| Byte1 Bit7 | Byte1 Bit60 | Byte2 Bit7 | Byte2 Bit60 | Byte3    | Byte4    |
|------------|-------------|------------|-------------|----------|----------|
| Sign       | Exponent    | Exponent   | Mantissa    | Mantissa | Mantissa |





Software description Modbus RTU V.1.9

V.1.9 | updated 10/2020

Page 46 of 99

## **Configuration registers**

Input circuit and measuring range, data type and value unit and the sensor characteristic for usual temperature sensors are set for the 8 inputs with the 8 configuration registers.

Modbus Function "03 (0x03) Read Holding Registers" Modbus Function "06 (0x06) Write Single Registers" Modbus Function "16 (0x10) Write Multiple Registers"

Holding Register 0-15: Offset Register is added to the measured

value in 2 succeeding registers,

(Input 1 = Register 0 - 1)

Float in both or Signed Integer 16 in the first one, same as for measured value

Holding Register 16-23: Configuration register (EEPROM), used to set

measuring range, data type of the measured value (Float / Integer16), unit of the measured value and

sensor characteristic (input 1 = register 16)

Holding Register 24-63: Register for interpolation charts (EEPROM),

alternately temperature and resistance, Float in 2 succeeding registers each.







Software description Modbus RTU

V.1.9 | updated 10/2020

Page 47 of 99

## Configuration registers for voltage or resistance measurement

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8    | 7 | 6   | 5   | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|---|------|---|-----|-----|---|---|---|---|---|
| 0  | 0  |    |    |    |    | 0 | rang | e | num | ber |   |   |   |   |   |

Bit 15-8:

Bit 7:

Bit 6-5:

Bit 4-0:

reserved

0 = voltage or resistance

range, defines input circuit or measuring range

0 0 voltage 0 to 10V, factory setting

0 1 voltage 0 to 10V, Pullup 2k at 5V

10 resistance

1 1 reserved

Number, defines presentation of the measured value

For voltage measurement:

0 measured value with data type float,

unit = 1V

1 measured value with data type signed int,

unit =  $10.24V/2^{15}=1V/3200$ 

=0.3125 mV

2-31 reserved for other presentations

For resistance measurement:

0 measured value with data type float,

unit = 1 Ohm

1 measured value with data type signed int,

unit = 0.1 Ohm (max. 3.2767 kOhm)

2 measured value with data type signed int,

unit = 1 Ohm (max. 32.767 kOhm)

3 measured value with data type signed int,

unit = 10 Ohm (max. 327.67 kOhm)

4 measured value with data type signed int,

unit = 100 Ohm (max. 3276,7 kOhm)

5-31 reserved for other presentations







Software description Modbus RTU

V.1.9 | updated 10/2020

Page 48 of 99

# Configuration registers for temperature measurement

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5   | 4    | 3 | 2 | 1    | 0 |
|----|----|----|----|----|----|---|---|---|---|-----|------|---|---|------|---|
| 0  |    |    |    |    |    |   | 1 |   |   | Nun | nber |   |   | Туре |   |

Bit 15-8: Bit 7: Bit 6-1: reserved

1 = temperature with sensor characteristic Number, is used to distinguish between sensor and characteristic

| 0     | Sensor PT100             | (-50150°C)      |
|-------|--------------------------|-----------------|
| 1     | Sensor PT500             | (-50150°C)      |
| 2     | Sensor PT1000            | (-50150°C)      |
| 3     | Sensor NI1000-TK5000     | (-50150°C)      |
| 4     | Sensor NI1000-TK6180     | (-50150°C)      |
| 5     | Sensor BALCO 500         | (-50150°C)      |
| 6     | Sensor KTY81-110         | (-50150°C)      |
| 7     | Sensor KTY81-210         | (-50150°C)      |
| 8     | Sensor NTC-1k8           | (-50150°C)      |
| 9     | Sensor NTC-5k            | (-50150°C)      |
| 10    | Sensor NTC-10k           | (-50150°C)      |
| 11    | Sensor NTC-20k           | (-50150°C)      |
| 12    | Sensor LM235             | (-40120°C)      |
| 13    | Sensor NTC-10k CAREL     | (-50110°C)      |
| 14-55 | Reserved for other sense | ors             |
| 56-61 | Use of the interpolation | chart see below |
| 62-63 | Reserved                 |                 |

Bit 0:

Data type of the measured value

| 0 | float,      | unit 1°C   |
|---|-------------|------------|
| 1 | signed int, | unit 0.1°C |



Page 49 of 99



Software description Modbus RTU

We realize ideas

# Configuration registers to use the interpolation chart

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4   | 3   | 2    | 1    | 0 |
|----|----|----|----|----|----|---|---|---|---|---|-----|-----|------|------|---|
|    | 0  |    |    |    |    |   | 1 |   | 7 |   | rar | ige | Intp | Туре |   |

V.1.9 | updated 10/2020

| Bit 15-8: | reserved                                        |                  |                            |     |  |  |
|-----------|-------------------------------------------------|------------------|----------------------------|-----|--|--|
| Bit 7:    | 1                                               | Temperature      | with sensor characterist   | tic |  |  |
| Bit 6-4:  | 7                                               | Interpolation    | chart                      |     |  |  |
| Bit 3-2:  | Range, defines input circuit or measuring range |                  |                            |     |  |  |
|           | 0 0                                             | Voltage 0 to     | 10V                        |     |  |  |
|           | 0 1                                             | Voltage 0 to     | 10V, Pullup 2k at 5V       |     |  |  |
|           | 1 0                                             | Resistance       |                            |     |  |  |
|           | 1 1                                             | Reserved         |                            |     |  |  |
| Bit 1:    | Selection                                       | of interpolation | า                          |     |  |  |
|           | 0                                               | Sensor chara     | cteristic is nearly linear |     |  |  |
|           | 1                                               | Sensor chara     | cteristic is nearly        |     |  |  |
|           |                                                 | exponential (    | (for ex. NTC)              |     |  |  |
| Bit 0:    | Data type                                       | e of the measure | ed value                   |     |  |  |
|           | 0                                               | float,           | unit 1°C                   |     |  |  |
|           | 1                                               | sianed int.      | unit 0.1°C                 |     |  |  |

Configurations registers are shown above in a way to display the meaning of the individual bit. For the application it is more convenient if the register contents is displayed as a whole, see the following chart.

| Dec | Hex  | Measuring range       | Data type  | Unit     | Maximum     |
|-----|------|-----------------------|------------|----------|-------------|
|     |      | voltage or resistance |            |          |             |
| 0   | 0x00 | voltage 0 to 10V      | float      | 1V       | 10.24 V     |
| 1   | 0x01 |                       | signed int | 0.3125mV |             |
| 32  | 0x20 | voltage/pullup        | float      | 1V       | 10.24 V     |
| 33  | 0x21 |                       | signed int | 0.3125mV |             |
| 64  | 0x40 | resistance            | float      | 1 Ohm    | 4 MOhm      |
| 65  | 0x41 |                       | signed int | 0.1 Ohm  | 3.2767 kOhm |
| 66  | 0x42 |                       | signed int | 1 Ohm    | 32.767 kOhm |
| 67  | 0x43 |                       | signed int | 10 Ohm   | 327.67 kOhm |
| 68  | 0x44 |                       | signed int | 100 Ohm  | 3276.7 kOhm |



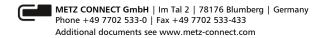


Software description Modbus RTU

V.1.9 | updated 10/2020

Page 50 of 99

Temperature measurement with data type float:


| Dec | Hex  | Measuring range          | Data type | Unit | Maximum  |
|-----|------|--------------------------|-----------|------|----------|
| 128 | 0x80 | Sensor PT100             | float     | 1°C  | -50150°C |
| 130 | 0x82 | Sensor PT500             |           |      | -50150°C |
| 132 | 0x84 | Sensor PT1000            |           |      | -50150°C |
| 134 | 0x86 | Sensor NI1000-TK5000     |           |      | -50150°C |
| 136 | 0x88 | Sensor NI1000-TK6180     |           |      | -50150°C |
| 138 | A8x0 | Sensor BALCO 500         |           |      | -50150°C |
| 140 | 0x8C | Sensor KTY81-110 NXP     |           |      | -50150°C |
| 142 | 0x8E | Sensor KTY81-210 NXP     |           |      | -50150°C |
| 144 | 0x90 | Sensor NTC-1k8 Thermokon |           |      | -50150°C |
| 146 | 0x92 | Sensor NTC-5k Thermokon  |           |      | -50150°C |
| 148 | 0x94 | Sensor NTC-10k Thermokon |           |      | -50150°C |
| 150 | 0x96 | Sensor NTC-20k Thermokon |           |      | -50150°C |
| 152 | 0x98 | Sensor LM235             |           |      | -40120°C |
| 154 | 0x9A | Sensor NTC-10k CAREL     |           |      | -50110°C |

Temperature measurement with data type signed int (register number is by 1 larger than above):

|     |      | 71 3 ( 3                 |            | , ,   |          |
|-----|------|--------------------------|------------|-------|----------|
| Dec | Hex  | Measuring range          | Data type  | Unit  | Maximum  |
| 129 | 0x81 | Sensor PT100             | signed int | 0.1°C | -50150°C |
| 131 | 0x83 | Sensor PT500             |            |       | -50150°C |
| 133 | 0x85 | Sensor PT1000            |            |       | -50150°C |
| 135 | 0x87 | Sensor NI1000-TK5000     |            |       | -50150°C |
| 137 | 0x89 | Sensor NI1000-TK6180     |            |       | -50150°C |
| 139 | 0x8B | Sensor BALCO 500         |            |       | -50150°C |
| 141 | 0x8D | Sensor KTY81-110 NXP     |            |       | -50150°C |
| 143 | 0x8F | Sensor KTY81-210 NXP     |            |       | -50150°C |
| 145 | 0x91 | Sensor NTC-1k8 Thermokon |            |       | -50150°C |
| 147 | 0x93 | Sensor NTC-5k Thermokon  |            |       | -50150°C |
| 149 | 0x95 | Sensor NTC-10k Thermokon |            |       | -50150°C |
| 151 | 0x97 | Sensor NTC-20k Thermokon |            |       | -50150°C |
| 153 | 0x99 | Sensor LM235             |            |       | -40120°C |
| 155 | 0x9B | Sensor NTC-10k CAREL     |            |       | -50110°C |

Measurement with interpolation chart:

| Dec | Hex  | Measuring range  | Data type  | Interpolation |
|-----|------|------------------|------------|---------------|
| 240 | 0xF0 | Voltage 0 to 10V | float      | linear        |
| 241 | 0xF1 |                  | signed int | linear        |
| 242 | 0xF2 |                  | float      | exponential   |
| 243 | 0xF3 |                  | signed int | exponential   |
| 244 | 0xF4 | Voltage/Pullup   | float      | linear        |
| 245 | 0xF5 |                  | signed int | linear        |
| 246 | 0xF6 |                  | float      | exponential   |
| 247 | 0xF7 |                  | signed int | exponential   |
| 248 | 0xF8 | Resistance       | float      | linear        |
| 249 | 0xF9 |                  | signed int | linear        |
| 250 | 0xFA |                  | float      | exponential   |
| 251 | 0xFB |                  | signed int | exponential   |







CONNECT

We realize ideas

Software description Modbus RTU

V.1.9 | updated 10/2020

Page 51 of 99

## Registers 24-63 (0x18-0x3F) interpolation chart

This chart can be used to convert and linearize values for sensors without a characteristic already defined in the device. The chart contains up to 10 nodes of the sensor characteristic to interpolate between.

Example: transformation from resistance to temperature for temperature sensors.

Register contents is stored in the EEPROM.

The description refers to temperature sensors. Other sensors than temperature sensors (e.g. humidity) are also possible and it is also possible to measure voltage instead of resistance.

These properties can be set in the configuration register:

Measuring range voltage

voltage, pullup 2k at 5 V (for ex. for LM235)

resistance (normal case with temperature sensors)

Interpolation sensor characteristic is nearly linear

sensor characteristic is nearly exponential

(for NTCs)

Data type of measuring range float (unit 1 °C)

signed int (unit 0.1 °C)

| Node | Registers   | Registers  |
|------|-------------|------------|
|      | Temperature | Resistance |
| 1    | 24-25       | 26-27      |
| 2    | 28-29       | 30-31      |
| 3    | 32-33       | 34-35      |
| 4    | 36-37       | 38-39      |
| 5    | 40-41       | 42-43      |
| 6    | 44-45       | 46-47      |
| 7    | 48-49       | 50-51      |
| 8    | 52-53       | 54-55      |
| 9    | 56-57       | 58-59      |
| 10   | 60-61       | 62-63      |

The nodes are filled beginning at the top of the chart, with a maximum of 10, and end with temperature = resistance = 0, if there are less nodes. Temperature and resistance values have to be in ascending or descending order. So the combination 0,0 as a node is not allowed. Data type in the registers: float temperature, float resistance.







Page 52 of 99



Software description Modbus RTU

## Modbus Function "43 /14 (0x2B / 0x0E) Read Device Identification"

V.1.9 | updated 10/2020

#### Request

Read Device ID code: 0x01 Object ID 0x00

## Response

Device ID code 0x01
Conformity level 0x01
More follows 0x00
Next object ID 0x00
Number of objects 0x03
Object ID 0x00
Object Length 0x11

Object Value "METZ CONNECT GmbH"

Object ID 0x01
Object Length 0x06
Object Value "MR-AI8"
Object ID 0x02
Object Length 0x04
Object Value "V1.6"





Software description Modbus RTU V.1.9 | updated 10/2020

Page 53 of 99

# MR-CI4

## I/O commands

# Modbus Function "04 (0x04) Read Input Registers"

| Input Re | gisters                                                                                                                                                                                                               |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Address  | Information                                                                                                                                                                                                           |
| 0 – 3    | Measured values of inputs 1-4, Data type Signed Integer16, Value ranges: Value 0 = 0 V , Value 32767 = 10.24 V Value 0 = 0 mA , Value 32767 = 20.48 mA Value 0 = 4 mA , Value 32767 = 20.38 mA                        |
| 4        | Status register  Bit 07: Position of DIP switches 18  Bit value 0 = OFF  Bit value 1 = ON  Bit 811: Status of inputs 14  Bit value 0 = voltage < 2 V or current < 4 mA  Bit value 1 = voltage ≥ 2 V or current ≥ 4 mA |

# Modbus Function "43 /14 (0x2B / 0x0E) Read Device Identification"

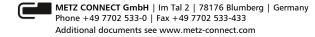
0x01

0x04

"V1.4"

## Request

| Read Device ID code: | 0x01 |
|----------------------|------|
| Object ID            | 0x00 |


# Response

Device ID code

**Object Length** 

**Object Value** 

| Conformity level  | 0x01                |
|-------------------|---------------------|
| More follows      | 0x00                |
| Next object ID    | 0x00                |
| Number of objects | 0x03                |
| Object ID         | 0x00                |
| Object Length     | 0x11                |
| Object Value      | "METZ CONNECT GmbH" |
| Object ID         | 0x01                |
| Object Length     | 0x06                |
| Object Value      | "MR-CI4"            |
| Object ID         | 0x02                |









Software description Modbus RTU

V.1.9 | updated 10/2020

Page 54 of 99

## MR-AIO4/2-IP

#### **Modbus-Function**

Functions to read and write registers, adressranges in brackets:

Read Input Registers (0 - 7)

Read Holding Registers (0 - 63, 65 - 66) Write Multiple Registers (0 - 63, 65, 66) Write Single Register (16 - 23, 65, 66)

Read Holding Registers (100 - 123, 130 - 143, 150 - 173, 180 - 193, 200 - 231) Write Multiple Registers (100 - 123, 130 - 143, 150 - 173, 180 - 193, 200 - 231)

# **Datatype float**

For the datatype float 2 registers each, i.e. 4 bytes, are needed.

Modbus follows the principle that for data with several bytes length, the highest value is transmitted first and the lowest value last (big endian).

If several registers are needed for one datatype, all of them should be read or written together in one command, so that the data is consistent.

The registers can also be accessed individually, but then the user has to make sure, that the data is consistent, e.g. with multiple queries.

| Register address     | Register + 0  |                   | Register + 1 |          |
|----------------------|---------------|-------------------|--------------|----------|
| Bytes in sequence    | Byte 1        | Byte 2            | Byte 3       | Byte 4   |
| of transmission      | High          | Low               | High         | Low      |
| Bit numbers          | Bit 31-24     | Bit 23-16         | Bit 15-8     | Bit 7-0  |
| Bits of float values | Sign, Exp 7-1 | Exp 0, Mant 22-16 | Mant 15-8    | Mant 7-0 |

Reference to a compatibility problem:

With float, 4 different sequences of bytes in the registers are common on the market.





Software description Modbus RTU

V.1.9 | updated 10/2020

Page 55 of 99

## **Function block analog Output (AO1-AO2)**

The MR-AIO4/2 has 2 analog outputs for voltage (0-10 V).

Depending on the configuration, the output values can be coded as floating point numbers (float OutF) or integers with 16 bit and sign (int16\_t OutI).

| Name     | Modbus Holding Registers                               | Adr. | Adr.  |
|----------|--------------------------------------------------------|------|-------|
|          |                                                        | AO1  | AO2   |
| Outl     | Values of analog outputs,                              | 20   | 21    |
|          | data type int16_t,                                     |      |       |
|          | range: value 0 = 0 Volt , value 32767 = 10,24 Volt     |      |       |
| InitOutI | Default values of analog outputs,                      | 22   | 23    |
|          | data type int16_t,                                     |      |       |
|          | factory default 0, storage in EEPROM                   |      |       |
| OutF     | Values of analog outputs,                              | 138  | 188   |
|          | data type float, unit %,                               |      |       |
|          | range: value 0 % = 0 Volt , value 102,4 % = 10,24 Volt |      |       |
| InitOutF | Default values of analog outputs,                      | 122  | 172   |
|          | data type float,                                       |      |       |
|          | factory default 0, storage in EEPROM                   |      |       |
| Switch   | Selection of output value:                             | 100  | 100   |
|          | 0: Modbus register Outl                                | Bits | Bits  |
|          | 1: Modbus register OutF                                | 4 -  | 6 - 7 |
|          | 2: Output Y of respective PID controller               | 5    |       |
|          | factory default 0, storage in EEPROM                   |      |       |

For information on how to select the output value, see also the chapter entitled "Interconnection of Function Blocks" at the end.

## **Function Block Bus Watchdog**

The connection to the Modbus master can be monitored with a watchdog timer. The timer restarts with every valid message sent to the device. Only the device address is important, not the rest of the message content. If the master or the connection fails and the timer expires, the outputs are switched to their default setting (safe state) and the red LED lights up. With the time constant 0 the watchdog timer is inactive.

| Name     | Modbus Holding Registers                   | Adr. |
|----------|--------------------------------------------|------|
| Watchdog | Time constant of communication monitoring, | 66   |
|          | data type uint16_t, resolution 10 ms,      |      |
|          | factory default 0, storage in EEPROM       |      |

When the device is switched on and the watchdog timer expires, these registers are copied:







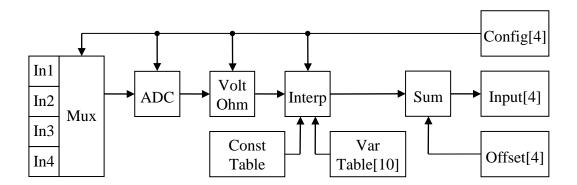
Software description Modbus RTU V.1.9 | updated 10/2020

Page 56 of 99

# <u>Default value</u> <u>Actual value</u>

 $\begin{array}{lll} \mbox{InitOutl\_1/2} & \rightarrow & \mbox{Outl\_1/2} \\ \mbox{InitOutF\_1/2} & \rightarrow & \mbox{OutF\_1/2} \\ \mbox{InitW 1/2} & \rightarrow & \mbox{W 1/2} \\ \end{array}$ 

## Function block analog-Input (AI1-AI4) Overview

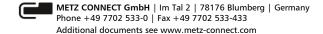

The MR-AIO4/2 has 4 universal analog inputs

- for voltage measurement (0 V 11.5 V)
- and resistance measurement (40 Ohm 4 MOhm).

An analog/digital conversion takes about 0.2 seconds and measurements are taken alternately at the inputs. At each input the measurement is performed in intervals of about 1 second, but when changing the resistance measuring range the interval is longer because measurements are performed several times.

There are operating modes to calculate the temperature of common temperature sensors. The voltage or resistance measured value is converted into the temperature with a value table and interpolation. There are several fix programmed tables for common sensors and a free programmable table with up to 10 interpolation points.

An offset can be added to the measured value. With this an adaptation to the sensor and the supply line or a fine adjustment can be realized.




In1...In4 Analog inputs Mux input switch

ADC Analog/Digital Converter
Volt/Ohm voltage/resistance calculation
Interp Interpolation with value tables

Sum Addition of an offset

ConstTable Value tables for standard sensors









Software description Modbus RTU

V.1.9 | updated 10/2020

Page 57 of 99

## Modbus register:

Config Configuration Register
Input Measured Value Register

Offset Offset register

VarTable Value table for own sensor type

## Modbus register

Configuration data is retained in the devices even in the event of a power failure. They are stored in an EEPROM and are marked accordingly below.

Depending on the configuration, measured values can be coded as floating point numbers (float) or integers with 16 bits and sign (int16 t).

| Name  | Modbus Input Registers (Read-Only)                                           | Adr.<br>Al1 | Adr.<br>Al2 | Adr.<br>Al3 | Adr.<br>Al4 |
|-------|------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|
| Input | Measured value in 2 consecutive registers, float in both or int16 t in first | 0           | 2           | 4           | 6           |

| Name     | Modbus Holding Registers                                   | Al  | Adr.   |
|----------|------------------------------------------------------------|-----|--------|
| Offset   | Offset register, is added to measured value,               | AI1 | 0      |
|          | in 2 consecutive registers,                                | AI2 | 2      |
|          | float in both or int16_t in first, same as measured value, | AI3 | 4      |
|          | factory default 0,                                         | Al4 | 6      |
|          | storage in EEPROM                                          |     |        |
| -        | Freely usable registers,                                   | -   | 8 - 15 |
|          | factory default 0,                                         |     |        |
|          | storage in EEPROM                                          |     |        |
| Config   | Configuration register,                                    | AI1 | 16     |
|          | used to select measuring range,                            | AI2 | 17     |
|          | data type of measured value (float / int16_t),             | AI3 | 18     |
|          | unit of measured value and sensor characteristic,          |     |        |
|          | factory default 0 (Voltage 0-10V, float),                  | Al4 | 19     |
|          | storage in EEPROM                                          |     |        |
| VarTable | Variable lookup table used for interpolation,              | -   | 24 -   |
|          | alternately temperature and resistance,                    |     | 63     |
|          | float in 2 consecutive registers each,                     |     |        |
|          | factory default 0,                                         |     |        |
|          | storage in EEPROM                                          |     |        |







Bit 15-8:

Software description Modbus RTU

V.1.9 | updated 10/2020

Page 58 of 99

## General information about the configuration register

The 4 configuration registers are used to set the input circuit and measuring range, data type and unit of the measured value and the sensor characteristic curve for common temperature sensors for the 4 inputs.

The register contents are stored in the EEPROM.

# Configuration registers for voltage or resistance measuring

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6    | 5  | 4   | 3   | 2 | 1 | 0 |
|----|----|----|----|----|----|---|---|---|------|----|-----|-----|---|---|---|
| 0  |    |    |    |    |    |   |   | 0 | Rang | je | Num | ber |   |   |   |

reserved

Bit 7: 0 = voltage or resistance range, Bit 6-5: defines input circuit or measuring range voltage 0 to 10V 0 1 voltage 0 to 10V, pullup 2k at 5 V 10 resistance 1 1 reserved Bit 4-0: Number, defines the presentation of the measured value For voltage measurement: measured value with data type float, unit = 1V1 measured value with data type signed int, unit =  $10.24V/2^{15}=1V/3200$ =0.3125 mV2-31 reserved for other presentations For resistance measurement: 0 measured value with data type float, unit = 1 Ohm1 measured value with data type signed int, unit = 0.1 Ohm (max. 3.2767 kOhm)2 measured value with data type signed int, unit = 1 Ohm (max. 32.767 kOhm)3 measured value with data type signed int, unit = 10 Ohm (max. 327.67 kOhm) 4 measured value with data type signed int, unit = 100 Ohm (max. 3276.7 kOhm)

5-31



reserved for other presentations





Software description Modbus RTU

V.1.9 | updated 10/2020

Page 59 of 99

## Configuration registers for temperature measurement

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4   | 3    | 2 | 1 | 0    |  |
|----|----|----|----|----|----|---|---|---|---|---|-----|------|---|---|------|--|
|    |    |    | (  | )  |    |   |   | 1 |   |   | Nun | nber |   |   | Туре |  |

Bit 15-8: reserved Bit 7: 1 = temperature with sensor characteristic Bit 6-1: Number, is used to distinguish sensor and measuring range 0 Sensor PT100 (-50..150°C) 1 Sensor PT500 (-50..150°C) 2 Sensor PT1000 (-50..150°C) 3 Sensor NI1000-TK5000 (-50..150°C) 4 Sensor NI1000-TK6180 (-50..150°C) 5 Sensor BALCO 500 (-50..150°C) 6 Sensor KTY81-110 (-50..150°C) 7 Sensor KTY81-210 (-50..150°C) 8 Sensor NTC-1k8 (-50..150°C) 9 Sensor NTC-5k (-50..150°C) 10 Sensor NTC-10k (-50..150°C) 11 Sensor NTC-20k (-50..150°C) 12 Sensor LM235 (-40..120°C) Sensor NTC-10k CAREL 13 (-50..110°C) 14-55 reserved for other sensors use of the interpolation chart see below 56-61 62-63 reserved Bit 0: Data type of the measuring range 0 float, Unit 1°C

1

signed int,

Unit 0.1°C





Software description Modbus RTU

Page 60 of 99

## Configuration registers to use the interpolation chart

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5   | 4   | 3    | 2    | 1 | 0 |
|----|----|----|----|----|----|---|---|---|---|-----|-----|------|------|---|---|
|    | 0  |    |    |    |    | 1 |   | 7 |   | Rar | nge | Intp | Туре |   |   |

V.1.9 | updated 10/2020

Bit 15-8: reserved Bit 7: 1 temperature with sensor characteristic Bit 6-4: 7 interpolation chart Bit 3-2: Range, defines input circuit or measuring range 0 0 voltage 0 to 10V voltage 0 to 10V, pullup 2k at 5 V 0 1 10 resistance 11 reserved Bit 1: Selection of interpolation sensor characteristic is nearly linear 0 1 sensor characteristic is nearly exponential (for ex. NTC) Data type of the measured value Bit 0: 0 float, unit 1°C 1 signed int, unit 0.1°C

Configurations registers are shown above in a way to display the meaning of the individual bit. For the application it is more convenient if the register contents is displayed as a whole, see the following chart

| Dez | Hex  | Measuring range        | Data type  | Unit      | Maximum     |
|-----|------|------------------------|------------|-----------|-------------|
|     |      | Voltage or resistance: |            |           |             |
| 0   | 0x00 | Voltage 0 to 10V       | float      | 1 V       | 10.24 V     |
| 1   | 0x01 |                        | signed int | 0.3125 mV |             |
| 32  | 0x20 | Voltage/Pullup         | float      | 1 V       | 10.24 V     |
| 33  | 0x21 |                        | signed int | 0.3125 mV |             |
| 64  | 0x40 | Resistance             | float      | 1 Ohm     | 4 MOhm      |
| 65  | 0x41 |                        | signed int | 0.1 Ohm   | 3.2767 kOhm |
| 66  | 0x42 |                        | signed int | 1 Ohm     | 32.767 kOhm |
| 67  | 0x43 |                        | signed int | 10 Ohm    | 327.67 kOhm |
| 68  | 0x44 |                        | signed int | 100 Ohm   | 3276.7 kOhm |



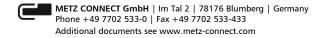


Software description Modbus RTU

V.1.9 | updated 10/2020

Page 61 of 99

Temperature measurement with data type float:


| Dez | Hex  | Measuring range          | Data type | Unit | Maximum  |
|-----|------|--------------------------|-----------|------|----------|
| 128 | 0x80 | Sensor PT100             | float     | 1°C  | -50150°C |
| 130 | 0x82 | Sensor PT500             |           |      | -50150°C |
| 132 | 0x84 | Sensor PT1000            |           |      | -50150°C |
| 134 | 0x86 | Sensor NI1000-TK5000     |           |      | -50150°C |
| 136 | 0x88 | Sensor NI1000-TK6180     |           |      | -50150°C |
| 138 | A8x0 | Sensor BALCO 500         |           |      | -50150°C |
| 140 | 0x8C | Sensor KTY81-110 NXP     |           |      | -50150°C |
| 142 | 0x8E | Sensor KTY81-210 NXP     |           |      | -50150°C |
| 144 | 0x90 | Sensor NTC-1k8 Thermokon |           |      | -50150°C |
| 146 | 0x92 | Sensor NTC-5k Thermokon  |           |      | -50150°C |
| 148 | 0x94 | Sensor NTC-10k Thermokon |           |      | -50150°C |
| 150 | 0x96 | Sensor NTC-20k Thermokon |           |      | -50150°C |
| 152 | 0x98 | Sensor LM235             |           |      | -40120°C |
| 154 | 0x9A | Sensor NTC-10k CAREL     |           |      | -50110°C |

Temperature measurement with data type signed int (register number is by 1 larger then above):

| Dez | Hex  | Measuring range          | Data type  | Unit  | Maximum  |
|-----|------|--------------------------|------------|-------|----------|
| 129 | 0x81 | Sensor PT100             | signed int | 0.1°C | -50150°C |
| 131 | 0x83 | Sensor PT500             |            |       | -50150°C |
| 133 | 0x85 | Sensor PT1000            |            |       | -50150°C |
| 135 | 0x87 | Sensor NI1000-TK5000     |            |       | -50150°C |
| 137 | 0x89 | Sensor NI1000-TK6180     |            |       | -50150°C |
| 139 | 0x8B | Sensor BALCO 500         |            |       | -50150°C |
| 141 | 0x8D | Sensor KTY81-110 NXP     |            |       | -50150°C |
| 143 | 0x8F | Sensor KTY81-210 NXP     |            |       | -50150°C |
| 145 | 0x91 | Sensor NTC-1k8 Thermokon |            |       | -50150°C |
| 147 | 0x93 | Sensor NTC-5k Thermokon  |            |       | -50150°C |
| 149 | 0x95 | Sensor NTC-10k Thermokon |            |       | -50150°C |
| 151 | 0x97 | Sensor NTC-20k Thermokon |            |       | -50150°C |
| 153 | 0x99 | Sensor LM235             |            |       | -40120°C |
| 155 | 0x9B | Sensor NTC-10k CAREL     |            |       | -50110°C |

Measurement with interpolation chart:

|     | 1    | na ·             | D          | 1             |
|-----|------|------------------|------------|---------------|
| Dez | Hex  | Measuring range  | Data type  | Interpolation |
| 240 | 0xF0 | Voltage 0 to 10V | float      | linear        |
| 241 | 0xF1 |                  | signed int | linear        |
| 242 | 0xF2 |                  | float      | exponential   |
| 243 | 0xF3 |                  | signed int | exponential   |
| 244 | 0xF4 | Voltage/Pullup   | float      | linear        |
| 245 | 0xF5 |                  | signed int | linear        |
| 246 | 0xF6 |                  | float      | exponential   |
| 247 | 0xF7 |                  | signed int | exponential   |
| 248 | 0xF8 | Resistance       | float      | linear        |
| 249 | 0xF9 |                  | signed int | linear        |
| 250 | 0xFA |                  | float      | exponential   |
| 251 | 0xFB |                  | signed int | exponential   |







CONNECT

We realize ideas

Software description Modbus RTU

V.1.9 | updated 10/2020

Page 62 of 99

## Registers 24-63 (0x18-0x3F) interpolation chart

This chart can be used to convert and linearize values for sensors without a characteristic already defined in the device. The chart contains up to 10 nodes of the sensor characteristic to interpolate between.

Example: transformation from resistance to temperature for temperature sensors.

Register contents is stored in the EEPROM.

The description refers to temperature sensors. Other sensors than temperature sensors (e.g. humidity) are also possible and it is also possible to measure voltage instead of resistance.

These properties can be set in the configuration register:

Measuring range voltage

voltage, pullup 2k at 5 V (for ex. for LM235)

resistance (normal case with temperature sensors)

Interpolation sensor characteristic is nearly linear

sensor characteristic is nearly exponential

(for NTCs)

Data type of measuring range float (unit 1 °C)

signed int (unit 0.1 °C)

| Node | Register    | Register   |
|------|-------------|------------|
|      | Temperature | Resistance |
| 1    | 24-25       | 26-27      |
| 2    | 28-29       | 30-31      |
| 3    | 32-33       | 34-35      |
| 4    | 36-37       | 38-39      |
| 5    | 40-41       | 42-43      |
| 6    | 44-45       | 46-47      |
| 7    | 48-49       | 50-51      |
| 8    | 52-53       | 54-55      |
| 9    | 56-57       | 58-59      |
| 10   | 60-61       | 62-63      |

The nodes are filled beginning at the top of the chart, with a maximum of 10, and end with temperature = resistance = 0, if there are less nodes. Temperature and resistance values have to be in ascending or descending order. So the combination 0,0 as a node is not allowed. Data type in the registers: float temperature, float resistance.









Software description Modbus RTU

V.1.9 | updated 10/2020

Page 63 of 99

# Function block PID controller (PID1-PID2) General information on the controller type

The MR-AIO4/2 contains 2 PID controllers for applications for temperature control.

#### T1 filter

An ideal PID controller causes problems due to differentiation component:

- Quick changes at the input lead to restriction at the controller output and, thus, to non-linear behavior. (This may also be desired.)
- Noise and other interferences of the input measured values are intensified.

Therefore, real PID controllers are implemented with an additional T1 filter with smaller time constant T1 (PIDT1 controller). The filter can only be assigned to the D component or to P, I and D components together. For this controller, it applies only to the D component.

## **Differentiator input**

The D component can be calculated from the difference of nominal value and actual value  $\pm$  (X – W) or directly from the actual value  $\pm$  X (this option can be switched). A quick change of the nominal value does not affect the output if the actual value is used directly.

## Differential equation

This differential equation is used to define the function and variables:

$$Y = Yp + Yi + Ydt$$

$$Yp = Fp \cdot Xw$$

$$Yi = Fp \cdot \frac{1}{Ti} \cdot \int_{0}^{t} (Xw) d\tau$$

$$Ydt + T1 \cdot \frac{d(Ydt)}{dt} = Fp \cdot Td \cdot \frac{d(Xwd)}{dt}$$

with W = nominal value Yi = integral component

X = actual value Ydt = differential component filtered

 $Xw = difference \pm (X - W)$  Fp = gain

 $Xwd = Xw \text{ or } \pm X$  Ti = integration time constant, reset time

Y = controller output Td = differential time constant, derivative action

time

Yp = proportional component T1 = filter time constant







Software description Modbus RTU

V.1.9 | updated 10/2020

Page 64 of 99

## **Output limitation**

The I-share Yi and the Y output are limited by the Ymin and Ymax constants. In addition, the Y output is limited by the values which can be changed during operation. PID1 controller has the input Amin which represents the lower limit for its Y output. PID2 controller has the Bmax input which represents the upper limit for its Y output.

## **Dead range**

This parameter can be used to prevent continuous small changes at the Y output. Otherwise, they can lead to wear of the valve controlled by the output. The Y output changes if the change is greater than DeadR and remains constant in all other cases.

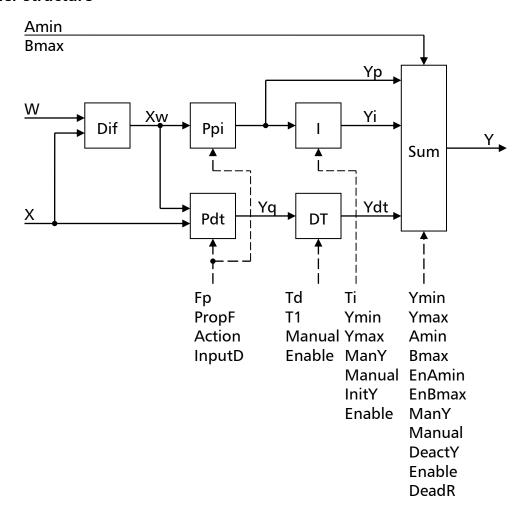
## **Manual operation**

In the Automatic mode, the value at the Y output is also constantly saved in ManY register. If the controller is switched to the Manual mode, it keeps its last value. By changing the ManY in the Manual mode, the Y output is set to the new value. If the Manual mode is quit, the Y output starts controlling at the current value.

#### **Activity**

The controller can be set to activated or deactivated. If it is deactivated, the Y output is set to DeactY permanently. If it is activated, the Y output starts its controlling activity with the InitY value.






V.1.9 | updated 10/2020

Page 65 of 99

## **Controller structure**

Software description Modbus RTU









Software description Modbus RTU

V.1.9 | updated 10/2020

Page 66 of 99

# Controller algorithm

(Parameter): if (PropF) 
$$Fp = (Ymax - Ymin) / Fp_Xp$$

else Fp = Fp Xp

Xw = X - WBlock Dif:

Yp = Fp \* XwBlock Ppi:

> Yp = - Ypif (Action)

Ya = Fp \* XBlock Pdt: if (InputD)

> Yq = Fp \* Xwelse Yq = - Yqif (Action)

Block I: Yi = Yi 1

> Yi = InitY - Ypif (Enable  $0 \rightarrow 1$ ) (Start PID) Yi = ManY - Ypif (Manual  $1 \rightarrow 0$ ) (Auto PID)

if (Ti > 0)Yi = Yi + Yp \* Te / Ti

if (Yi < Ymin)Yi = Yminif (Yi > Ymax)Yi = Ymaxif (!Enable) Yi = 0if (Manual) Yi = 0

Block DT: Yd = 0

> if (Td > 0)Yd = (Yq - Yq 1) \* Td / Te

> > Ydt = Yd

if (T1 > 0)Ydt = Ydt 1 + (Yd - Ydt 1) \* Te / T1

if (!Enable) Ydt = 0Ydt = 0if (Manual)

Block Sum: Ys = Yp + Yi + Ydt

> if (Ys < Ymin) Ys = Yminif (Ys > Ymax)Ys = Ymax

if (Ys < Amin) Ys = Aminif (EnAmin) (only PID1) if (EnBmax) if (Ys > Bmax) Ys = Bmax(only PID2)

if (Manual) Ys = ManYif (!Enable) Ys = DeactYif (!Manual) ManY = Ys

if (|Y - Ys| > DeadR) Y = Ys

(Time Step Te): Yi 1 = Yi, Yq 1 = Yq, Ydt 1 = Ydt





Software description Modbus RTU

V.1.9 | updated 10/2020

Page 67 of 99

# **Modbus registers**

The controller parameters belong to the data type float. They are saved permanently in FEPROM

They can be accessed using the following Modbus registers.

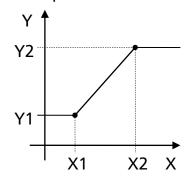
| Name       | Configuration Registers, storage in El        | EPROM                |           | Adr.  | Adr.  |
|------------|-----------------------------------------------|----------------------|-----------|-------|-------|
|            | (Modbus Holding Registers)                    |                      |           | PID1  | PID2  |
| Mode       | Option Flags for Operating Mode:              |                      |           | 101   | 151   |
| .Enable    | Activation signal of controller.              |                      |           | Bit 0 | Bit 0 |
|            | 0: Controller is inactive                     |                      |           |       |       |
|            | 1: Controller is active                       |                      | (Default) |       |       |
| .PropF     | The Proportional factor can be specif         | ied in two w         | ays.      | Bit 1 | Bit 1 |
|            | 0: Amplification Fp                           |                      | (Default) |       |       |
|            | 1: Range Xp                                   |                      |           |       |       |
| .Action    | The difference $Xw = \pm (X - W)$ can b       | e used direct        | tly or    | Bit 2 | Bit 2 |
|            | negated.                                      |                      |           |       |       |
|            | 0: Difference used directly, $Xw = + (x - 1)$ |                      |           |       |       |
|            | 1: Difference used negated, $Xw = -($         |                      | (Default) |       |       |
| .InputD    | The derivated part can be calculated          | from Xw or $\lambda$ |           | Bit 3 | Bit 3 |
|            | 0: D-Part calculated from ± Xw                |                      | (Default) |       |       |
|            | 1: D-Part calculated from ± X                 |                      |           |       |       |
| .EnAmin    | Enable for minimum input Amin (onl            | y PID1).             |           | Bit 4 |       |
|            | 0: Disable                                    |                      | (Default) |       |       |
|            | 1: Enable                                     |                      |           |       | _     |
| .EnBmax    | Enable for maximum input Bmax (on             | ly PID2).            |           |       | Bit 4 |
|            | 0: Disable                                    |                      | (Default) |       |       |
|            | 1: Enable                                     |                      |           | L     |       |
| .Manual    | 0: Automatic mode                             |                      | (Default) | Bit 5 | Bit 5 |
|            | 1: Manual mode                                |                      |           |       |       |
| Fp_Xp      | Proportional factor specified in one o        | -                    |           | 102   | 152   |
|            | - Amplification Fp                            | (Default 3,          | •         |       |       |
|            | - Range Xp                                    | (                    | Unit °C)  |       |       |
| <b>-</b> - | Relation: Fp * Xp = (Ymax – Ymin)             | /D ( 1: 20           | 0 11 1/ ) | 404   | 454   |
| Ti         | Integration time                              | (Default 30          |           | 104   | 154   |
| Td         | Derivation time                               | (Default 1,          |           | 106   | 156   |
| T1         | Filter time                                   | (Default 10          | , Unit s) | 108   | 158   |
| Ymin       | Lower limit of output Y                       | (Unit %)             |           | 110   | 160   |
| Ymax       | Upper limit of output Y                       | (Unit %)             |           | 112   | 162   |
| DeadR      | Dead range of output Y,                       |                      | 41.14.645 | 114   | 164   |
|            | Y changes in minimum steps of Dead            |                      | (Unit %)  |       | 1.5.5 |
| DeactY     | Y value when controller is inactive           | (Default 0,          | Unit %)   | 116   | 166   |
| InitY      | Y start value when controller is switch       |                      |           | 118   | 168   |
|            |                                               | (Default 0,          | Unit %)   |       |       |

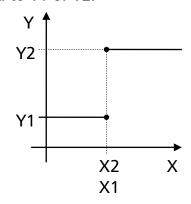


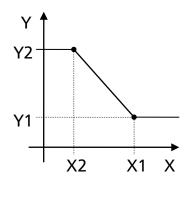


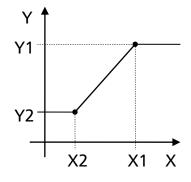
Page 68 of 99

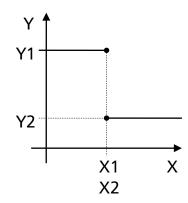


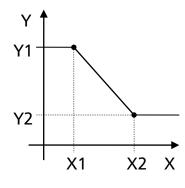

We realize ideas


| Software description Modbus RTU | V.1.9   updated 10/2020 |
|---------------------------------|-------------------------|
|                                 |                         |


| Name | Visualization / Control Registers |                     | Adr. | Adr. |
|------|-----------------------------------|---------------------|------|------|
|      | (Modbus Holding Registers)        |                     | PID1 | PID2 |
| Yp   | Proportional part                 | (Unit %, Read Only) | 130  | 180  |
| Yi   | Integral part                     | (Unit %, Read Only) | 132  | 182  |
| Ydt  | Derivate part, filtered           | (Unit %, Read       | 134  | 184  |
|      | Only)                             |                     |      |      |
| ManY | Y value when using manual mode    | (Unit %)            | 142  | 192  |


# Function block Linear mapping with limitation (LCL1-LCL4) Description LCL1 - LCL2


The function block has the X input and Y output. Between two limits (X1, X2), the input values are shown on a linear map relative to the output values (Y1...Y2). Outside the limits, the output values are limited to Y1 or Y2.

















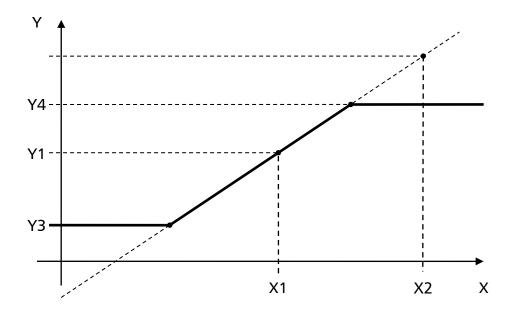



V.1.9 | updated 10/2020

Page 69 of 99

## **Modbus registers**

Software description Modbus RTU


The parameters belong to the float data type. They are saved permanently in EEPROM. Separate holding registers for each function block LCL1...LCL2:

| Name | Configuration Registers, | Configuration Registers, storage in EEPROM |     |     |  |  |
|------|--------------------------|--------------------------------------------|-----|-----|--|--|
|      | (Modbus Holding Registe  | (Modbus Holding Registers)                 |     |     |  |  |
| Y1   | Point1, output Y         | (Default 0)                                | 200 | 208 |  |  |
| Y2   | Point2, output Y         | (Default 100)                              | 202 | 210 |  |  |
| X1   | Point1, input X          | (Default 0)                                | 204 | 212 |  |  |
| X2   | Point2, input X          | (Default 100)                              | 206 | 214 |  |  |

## **Description LCL3 - LCL4**

The function block has the X input and Y output. Two points (X1, Y1) and (X2, Y2) define how the input values are mapped to the output values.

The output values are limited to Y3 (minimum) or Y4 (maximum).

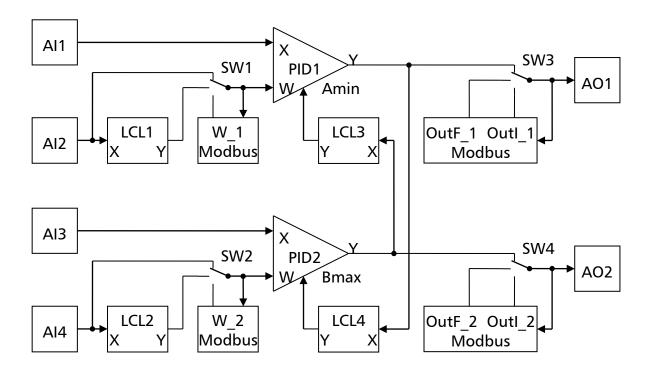






V.1.9 | updated 10/2020

Page 70 of 99


## **Modbus registers**

Software description Modbus RTU

The parameters belong to the float data type. They are saved permanently in EEPROM. Separate holding registers for each function block LCL1...LCL4:

| Name | Configuration Registers, storage in EEPROM |               | Adr. | Adr. |
|------|--------------------------------------------|---------------|------|------|
|      | (Modbus Holding Registers)                 |               | LCL3 | LCL4 |
| Y1   | Point1, output Y                           | (Default 0)   | 216  | 228  |
| Y2   | Point2, output Y                           | (Default 100) | 218  | 230  |
| X1   | Point1, input X                            | (Default 0)   | 220  | 232  |
| X2   | Point2, input X                            | (Default 100) | 222  | 234  |
| Y3   | Lower limit of output Y                    | (Default 0)   | 224  | 236  |
| Y4   | Upper limit of output Y                    | (Default 100) | 226  | 238  |

## Wiring the function blocks Overview



Depending on the operating mode, nominal value and actual value can originate from the analog inputs. These inputs provide values in Volts, Ohms or degrees of Celsius. If the function block Linear conversion / limit or freely programmable interpolation table is used in the analog input, adjustment to other value ranges and units can be performed at the controller input.









Software description Modbus RTU

V.1.9 | updated 10/2020

Page 71 of 99

If the controller nominal value is set via Modbus, there are 2 separate registers:

- The initial nominal value InitW 1/2 is saved permanently in EEPROM.
- The nominal value W 1/2 can be written or read out anytime using Modbus.

The output value for an analog output can originate from the registers Outl and OutF or from a PID controller. After each selection, the output value is reported in OutL and OutF.

When switching on the device and after the Watchdog timer has elapsed, these registers are copied:

 $\begin{array}{lll} \underline{\text{Default setting}} & \underline{\text{Current value}} \\ \underline{\text{InitOutI\_1/2}} & \rightarrow & \underline{\text{OutI\_1/2}} \\ \underline{\text{InitOutF\_1/2}} & \rightarrow & \underline{\text{OutF\_1/2}} \\ \underline{\text{InitW\_1/2}} & \rightarrow & \underline{\text{W\_1/2}} \\ \end{array}$ 

## **Modbus registers**

One PID controller is assigned to one output and 2 inputs respectively. A register contains fields for the switches shown in the figure. Other registers contain the nominal value and output value.

| Name    | Configuration Registers, storage in EEPROM                            |                      | Adr.  |
|---------|-----------------------------------------------------------------------|----------------------|-------|
|         | (Modbus Holding Registers)                                            |                      |       |
| Switch  | Selection of signals                                                  | (Default 0)          | 100   |
| .SW1    | Selection of setpoint W for controller PID1:                          |                      | Bits  |
|         | 0: Analog input In2                                                   |                      | 0 – 1 |
|         | 1: Analog input In2 with Linear Conversion / Limit LCL1               |                      |       |
|         | 2: Modbus register W_1                                                |                      |       |
|         | In each selection the setpoint W is shown in Modbus register W_1.     |                      |       |
| .SW2    | Selection of setpoint W for controller PID2:                          |                      |       |
|         | 0: Analog input In4                                                   |                      |       |
|         | 1: Analog input In4 with Linear Conversion / Limit LCL2               |                      |       |
|         | 2: Modbus register W_2                                                |                      |       |
|         | In each selection the setpoint W is shown in Modbus register W_2.     |                      |       |
| .SW3    | Selection of output value for analog output Out1:                     |                      | Bits  |
|         | 0: Modbus register Outl_1                                             | (int16_t)            | 4 – 5 |
|         | 1: Modbus register OutF_1                                             | (float %)            |       |
|         | 2: Output value Y of controller PID1                                  |                      |       |
|         | In each selection the output value is shown in both Modbus registers. |                      |       |
| .SW4    | Selection of output value for analog output Out2:                     |                      | Bits  |
|         | 0: Modbus register Outl_2                                             | (int16_t)            | 6 – 7 |
|         | 1: Modbus register OutF_2                                             | (float %)            |       |
|         | 2: Output value Y of controller PID2                                  |                      |       |
|         | In each selection the output value is shown in both Modbus registers. |                      |       |
| InitW_1 | Initial setpoint for controller PID1                                  | (Default 0, Unit °C) | 120   |
| InitW_2 | Initial setpoint for controller PID2                                  | (Default 0, Unit °C) | 170   |







| Software description Modbus RTU | V.1.9   updated 10/2020 | Page 72 of 99 |
|---------------------------------|-------------------------|---------------|
|---------------------------------|-------------------------|---------------|

| Name | Visualization /Control Registers<br>(Modbus Holding Registers) |                     | Adr. |
|------|----------------------------------------------------------------|---------------------|------|
| W_1  | Setpoint W for controller PID1                                 | (Unit °C)           | 136  |
| W_2  | Setpoint W for controller PID2                                 | (Unit °C)           | 186  |
| Amin | Minimum value for PID1                                         | (Unit %, Read only) | 140  |
| Bmax | Maximum value for PID2                                         | (Unit %, Read only) | 190  |

## Modbus Function "43 /14 (0x2B / 0x0E) Read Device Identification"

#### Request

Read Device ID code: 0x01 Object ID 0x00

#### Response

Device ID code 0x01
Conformity level 0x01
More follows 0x00
Next object ID 0x00
Number of objects 0x03
Object ID 0x00
Object Length 0x11

Object Value "METZ CONNECT GmbH"

Object ID 0x01
Object Length 0x09

Object Value "MR-AIO4/2"

Object ID 0x02
Object Length 0x04
Object Value "V1.3"







Software description Modbus RTU

V.1.9 | updated 10/2020

Page 73 of 99

## MR-SM3

### I/O commands

Modbus Function "03 (0x03) Read Holding Registers" (R)

Modbus Function "04 (0x04) Read Input Registers" (R)

Modbus Function "06 (0x06) Write Single Register" (W)

Modbus Function "16 (0x10) Write Multiple Registers" (W)

### Information

The Input Registers 0 and 31 to 38 are only relevant for production process.

Read Holding Registers (0 - 127, 256 - 383, 512 - 639, 768 - 895)

Read Input Registers (0 - 127, 256 - 383, 512 - 639, 768 - 895)

Write Single Register (0, 31, 32, 42 to 59, 65, 120 - 127)

Write Multiple Registers (42 to 59, 65, 120 - 127)

| Input Reg           | gister, Holding Register                                             |                |                  |
|---------------------|----------------------------------------------------------------------|----------------|------------------|
| Register<br>Address | Description                                                          | Data type      | Solution<br>Unit |
| 0                   | Calibration command Is only used during production.                  | Unsigned R / W | -                |
| 1<br>2<br>3         | Voltage 1 RMS<br>Voltage 2 RMS<br>Voltage 3 RMS                      | Unsigned<br>R  | 0.1 V            |
| 4<br>5<br>6         | Current 1 RMS Current 2 RMS Current 3 RMS                            | Unsigned<br>R  | 0.01 A           |
| 7<br>8<br>9         | Voltage 1 Peak value<br>Voltage 2 Peak value<br>Voltage 3 Peak value | Unsigned<br>R  | 0.1 V            |
| 10<br>11<br>12      | Current 1 Peak value<br>Current 2 Peak value<br>Current 3 Peak value | Unsigned<br>R  | 0.01 A           |
| 13<br>14<br>15      | Frequency 1 Frequency 2 Frequency 3                                  | unsigned       | 0.01 Hz          |







Software description Modbus RTU

V.1.9 | updated 10/2020

Page 74 of 99

| 16    | Active power 1                                    | Signed     | 1 W                                   |
|-------|---------------------------------------------------|------------|---------------------------------------|
| 17    | Active power 1 Active power 2                     | Signed     | I VV                                  |
| 18    | Active power 2 Active power 3                     | R          |                                       |
| 19    | <del> </del>                                      |            | 1 VA                                  |
| 20    | Apparent power 1 Apparent power 2                 | Unsigned   | IVA                                   |
| 21    | Apparent power 2 Apparent power 3                 | R          |                                       |
|       | <del>  ''                                  </del> |            | 0.4.14                                |
| 22    | Active power 1                                    | Signed     | 0.1 W                                 |
| 23    | Active power 2                                    | _          |                                       |
| 24    | Active power 3                                    | R          |                                       |
| 25    | Apparent power 1                                  | Unsigned   | 0.1 VA                                |
| 26    | Apparent power 2                                  |            |                                       |
| 27    | Apparent power 3                                  | R          |                                       |
| 28    | Reactive power 1 positive at inductive load       | Signed     | 0.1 VAR                               |
| 29    | Reactive power 2 negative at capacitive load      |            |                                       |
| 30    | Reactive power 3                                  | R          |                                       |
| 31    | Calibration voltage                               | Unsigned   | 0.01 V                                |
|       |                                                   | R/W        |                                       |
| 32    | Calibration current                               | Unsigned   | 0.001 A                               |
|       |                                                   | R/W        |                                       |
| 33    | Calibration status flags 1                        | Bits 0-15  | _                                     |
| 34    | Calibration status flags 2                        | Ditis 0 15 |                                       |
| 35    | Calibration status flags 3                        | R          |                                       |
| 36    | Calibration status flags 1                        | Bits 16-31 | _                                     |
| 37    | Calibration status flags 2                        | וטיטו      |                                       |
| 38    | Calibration status flags 3                        | R          |                                       |
| 39    | Reactive power 1 positive at inductive load       | signed     | 1 VAR                                 |
| 40    | Reactive power 2 negative at inductive load       | signed     | IVAN                                  |
| 41    | Reactive power 3                                  | R          |                                       |
| 42-43 | Active energy 1 Range 0 to 999.999.999            | unsigned   | 1 Wh                                  |
| 44-45 | Active energy 2                                   | long       | ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' |
| 46-47 | Active energy 3                                   | long       |                                       |
| 10 17 | / tears energy 5                                  | R/W        |                                       |
|       | Counts absorbed active energy increasing order    | 11, 11     |                                       |
|       | and generated active energy decreasing order      |            |                                       |
|       | Begins after device power-on with the value 0.    |            |                                       |
| 48-49 | Reactive energy 1 Range 0 to 999.999.999          | unsigned   | 1 VARh                                |
| 50-51 | Reactive energy 2                                 | long       |                                       |
| 52-53 | Reactive energy 3                                 |            |                                       |
|       |                                                   | R/W        |                                       |
|       | Counts absorbed active energy increasing order    |            |                                       |
|       | and generated active energy decreasing order      |            |                                       |
|       | Begins after device power-on with the value 0.    |            |                                       |







Software description Modbus RTU

V.1.9 | updated 10/2020

Page 75 of 99

| 54    | Transformation factor voltage 1 Values 1 to 254  | unsigned | -   |
|-------|--------------------------------------------------|----------|-----|
| 55    | Transformation factor voltage 2                  |          |     |
| 56    | Transformation factor voltage 3                  | R/W      |     |
|       | Non-volatile storage in EEPROM.                  |          |     |
|       | Has only an effect on the registers of energy or |          |     |
|       | on the registers with data type float.           |          |     |
| 57    | Transformation factor Current 1 Values 1 to 254  | unsigned | -   |
| 58    | Transformation factor Current 2                  |          |     |
| 59    | Transformation factor Current 3                  | R/W      |     |
|       | Non-volatile storage in EEPROM.                  |          |     |
|       | Has only an effect on the registers of energy or |          |     |
|       | on the registers with data type float.           |          |     |
| 60    | Phase angle 1                                    | signed   | 1 ° |
| 61    | Phase angle 2                                    |          |     |
| 62    | Phase angle 3                                    | R        |     |
| 65    | Codes for bit rate and parity                    | unsigned | -   |
|       | Factory setting 19200 bits, even parity.         | R/W      |     |
|       | Non-volatile storage in EEPROM.                  |          |     |
|       | Bit 0-3: Code for bit rate.                      |          |     |
|       | Code 0x01 0x02 0x03 0x04 0x05 0x06 0x07          |          |     |
|       | 0x08 Bit/s 1200 2400 4800 9600 19200 38400 57600 |          |     |
|       | 115200                                           |          |     |
|       | Bit 4-7: Code for parity.                        |          |     |
|       | Code 0x10 0x20 0x30                              |          |     |
|       | Parity Even Odd None                             |          |     |
|       | Bit 8-15: Value 0x53 enables changes with the    |          |     |
|       | commands Write-Single/Multiple-Registers.        |          |     |
|       | Then write this register as the only one.        |          |     |
| 66-67 | Active power 1                                   | float    | W   |
| 68-69 | Active power 2                                   |          |     |
| 70-71 | Active power 3                                   | R        |     |
| 72-73 | Apparent power 1                                 | float    | VA  |
| 74-75 | Apparent power 2                                 |          |     |
| 76-77 | Apparent power 3                                 | R        |     |
| 78-79 | Reactive power 1 positive at inductive load      | float    | VAR |
| 80-81 | Reactive power 2 negative at capacitive load     |          |     |
| 82-83 | Reactive power 3                                 | R        |     |







Software description Modbus RTU

V.1.9 | updated 10/2020

Page 76 of 99

|       | T                                                      | 1        | T     |
|-------|--------------------------------------------------------|----------|-------|
| 84-85 | Voltage 1 RMS.                                         | float    | V     |
| 86-87 | Voltage 2 RMS                                          |          |       |
| 88-89 | Voltage 3 RMS                                          | R        |       |
| 90-91 | Current 1 RMS                                          | float    | Α     |
| 92-93 | Current 2 RMS                                          |          |       |
| 94-95 | Current 3 RMS                                          | R        |       |
| 96-97 | Voltage 1 Peak value                                   | float    | V     |
| 98-99 | Voltage 2 Peak value                                   |          |       |
| 100-  | Voltage 3 Peak value                                   | R        |       |
| 101   |                                                        |          |       |
| 102-  | Current 1 Peak value                                   | float    | Α     |
| 103   |                                                        |          |       |
| 104-  | Current 2 Peak value                                   | R        |       |
| 105   |                                                        |          |       |
| 106-  | Current 3 Peak value                                   |          |       |
| 107   |                                                        |          |       |
| 108-  | Power factor 1                                         | float    | -     |
| 109   |                                                        |          |       |
| 110-  | Power factor 2                                         | R        |       |
| 111   |                                                        |          |       |
| 112-  | Power factor 3                                         |          |       |
| 113   |                                                        |          |       |
| 114   | Angle of phase 2 to 2                                  | signed   | 0.1 ° |
| 115   | Angle of phase 3 to 2                                  |          |       |
| 116   | Angle of phase 2 to 3                                  | R        |       |
|       |                                                        |          |       |
|       | Used only with three-phase current,                    |          |       |
|       | specified values                                       |          |       |
|       | -120° at normal direction of rotation (negative,       |          |       |
|       | right)                                                 |          |       |
|       | 120° at reverse direction of rotation (positive, left) |          |       |
| 117   | Voltage value of positive sequence                     | unsigned | 0.1 V |
| 118   | Voltage value of negative sequence                     |          |       |
| 119   | Voltage value of zero sequence                         | R        |       |
|       | Values of the symmetrical components with three-       |          |       |
|       | phase current.                                         |          |       |
| 120   | Undervoltage tolerance                                 | unsigned | %     |
|       | Effective voltage                                      |          |       |
|       | = 230 V * (100 % – tolerance undervoltage) /           | R/W      |       |
|       | 100 %                                                  |          |       |
|       | Nonvolatile storage in EEPROM.                         |          |       |
|       |                                                        | •        | •     |









Software description Modbus RTU V.1.9 | updated 10/2020

Page 77 of 99

| 121 | Overvoltage tolerance                                  | unsigned | % |
|-----|--------------------------------------------------------|----------|---|
|     | Effective voltage                                      |          |   |
|     | = 230 V * (100 % + tolerance_overvoltage) /            | R/W      |   |
|     | 100 %                                                  |          |   |
|     | Nonvolatile storage in EEPROM.                         |          |   |
| 122 | Asymmetry tolerance (negative sequence)                | unsigned | % |
|     | Voltage_negative_system /                              |          |   |
|     | voltage_positive_sequence                              | R/W      |   |
|     | = tolerance_asymmetry / 100 %                          |          |   |
|     | Nonvolatile storage in EEPROM.                         |          |   |
| 123 | Asymmetry tolerance (zero sequence)                    | unsigned | % |
|     | Voltage_zero_sequence / voltage_positive_sequence      |          |   |
|     | = tolerance_asymmetry / 100 %                          | R/W      |   |
|     | Nonvolatile storage in EEPROM.                         |          |   |
| 124 | Initial setting of                                     | unsigned | - |
|     | Enable bits of voltage monitoring                      |          |   |
|     | Is copied to register 125 when the device is           | R/W      |   |
|     | switched on.                                           |          |   |
|     | Nonvolatile storage in EEPROM.                         |          |   |
| 125 | Enable bits of voltage monitoring                      | unsigned | - |
|     | Each error bit in register 126 has one enable bit.     |          |   |
|     | Only if an enable bit is set, the respective error bit | R/W      |   |
|     | can be set.                                            |          |   |
|     | Recording of measured voltage values stops when        |          |   |
|     | error bits are set.                                    |          |   |
| 126 | Error bits of voltage monitoring                       | unsigned | - |
|     | Bit 0-2: voltage drop 1-3 (< 25V)                      |          |   |
|     | Bit 3-5: undervoltage 1-3                              | R/W      |   |
|     | Bit 6-8: overvoltage 1-3                               |          |   |
|     | Bit 13: asymmetry (zero sequence)                      |          |   |
|     | Bit 14: asymmetry (negative sequence)                  |          |   |
|     | Bit 15: wrong direction of rotation                    |          |   |
|     | The respective bit is automatically set in case of an  |          |   |
|     | error, it is not deleted when the error has been       |          |   |
|     | removed but has to be deleted via Modbus.              |          |   |
| 127 | It is also possible to set bits via Modbus.            |          |   |
| 127 | Status of measured value recording                     | unsigned | - |
|     | Bit 0: recording (0) is running, (1) is stopped        | D        |   |
|     | Bit 1: period of recording (0) 100ms, (1) 200ms        | R        |   |
|     |                                                        | R/W      |   |







Software description Modbus RTU V.1.9 | updated 10/2020

Page 78 of 99

| 256- | Recording of measured values voltage L1-N                | signed | 0.1 V |
|------|----------------------------------------------------------|--------|-------|
| 383  | Recording of measured values voltage L2-N                |        |       |
| 512- | Recording of measured values voltage L3-N                | R      |       |
| 639  | The wave shape of the three voltages can be              |        |       |
| 768- | determined with 128 recorded measured values of          |        |       |
| 895  | each phase.                                              |        |       |
|      | Recording of measured voltage values stops when          |        |       |
|      | error bits are set, so that the cause of error can later |        |       |
|      | be determined on the basis of the wave shape.            |        |       |

At a RMS voltage less than 25 V the values of voltage, current, frequency and power are transmitted as 0.

The registers are updated with new measured values once per second.

### Special data types

For Modbus applies, that in case of data with a length of several Bytes the High Byte will be transmitted first and the Low Byte last (Big-Endian). Data types with a length of multiple registers are described below.

If a data type needs several registers they should be read or written all together in one command to assure consistency of data. Registers can be accessed individually but then the user has to assure that data are consistent, for example with multiple queries.

### Data type unsigned long

This data type uses 2 registers each, that means 4 Bytes.

| Register addresses | Register + 0 |           | Register + 1 |         |
|--------------------|--------------|-----------|--------------|---------|
| Bytes in order of  | Byte 1       | Byte 2    | Byte 3       | Byte 4  |
| transmission       | High         | Low       | High         | Low     |
| Bit numbers        | Bit 31-24    | Bit 23-16 | Bit 15-8     | Bit 7-0 |

#### Data type float

This data type uses 2 registers each, that means 4 Bytes.

| Register addresses  | Register + 0  |                   | Register + 1 |          |
|---------------------|---------------|-------------------|--------------|----------|
| Bytes in order of   | Byte 1        | Byte 2            | Byte 3       | Byte 4   |
| transmission        | High          | Low               | High         | Low      |
| Bit numbers         | Bit 31-24     | Bit 23-16         | Bit 15-8     | Bit 7-0  |
| Bits of float value | Sign, Exp 7-1 | Exp 0, Mant 22-16 | Mant 15-8    | Mant 7-0 |

Indication of a compatibility problem:

4 different orders of the bytes in the registers are used in the market for data type "Float".





Page 79 of 99



Software description Modbus RTU

We realize ideas

## Configuration of the terminal block contacts

1La, 2La, 3La Phase supply
1Lb, 2Lb, 3Lb Phase consumer
1N, 2N, 3N Neutral lead

At the contacts of the neutral lead the supply and consumer should not only be connected via the PC board because otherwise the power loss in the device is getting too high. The two neutral lead terminal blocks have to be connected by an external bridge if both are used.

V.1.9 | updated 10/2020

### Modbus Function "43 /14 (0x2B / 0x0E) Read Device Identification"

## Request

Read Device ID code: 0x01 Object ID 0x00

### Response

Device ID code 0x01
Conformity level 0x01
More follows 0x00
Next object ID 0x00
Number of objects 0x03
Object ID 0x00
Object Length 0x11

Object Value "METZ CONNECT GmbH"

Object ID 0x01
Object Length 0x06
Object Value "MR-SM3"
Object ID 0x02

Object ID 0x02
Object Length 0x04
Object Value "V1.2"







Software description Modbus RTU

V.1.9 | updated 10/2020

Page 80 of 99

## MR-Multi I/O 12DI/7AI/2AO/8DO

I/O-commands

Modbus-Function "01 (0x01) Read Coils" (R)

Modbus-Function "02 (0x02) Read Discrete Inputs" (R)

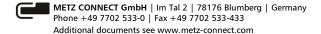
Modbus-Function "03 (0x03) Read Holding Registers" (R)

Modbus-Function "04 (0x04) Read Input Registers" (R)

Modbus-Function "06 (0x06) Write Single Register" (W)

Modbus-Function "16 (0x10) Write Multiple Registers" (W)

#### Information


The holding registers 64 and 67 to 69 are only relevant for production process.

| Read Discrete Inputs     | (0 - 15) |
|--------------------------|----------|
| Read Coils               | (0 - 31) |
| Write Multiple Coils     | (0 - 31) |
| Write Single Coil        | (0 - 31) |
| Read Input Registers     | (0 - 99) |
| Read Holding Registers   | (0 - 99) |
| Write Multiple Registers | (0 - 99) |
| Write Sinale Register    | (0 - 99) |

## **Function block Bus-Watchdog**

The Modbus communication may be controlled by a watchdog timer. The timer restarts with every valid message, that was directed to the device. Only the devices address is relevant, not the rest of the message. If the bus master or the connection fails and the timer will elapse, the outputs switch to their default values (save state) and the red LED will shine. With the time constants value of 0 the watchdog timer is inactive.

| Holding | Holding Registers                                                                                                                                   |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Addr.   | Description                                                                                                                                         |  |  |
| 66      | Time constant of communication monitoring                                                                                                           |  |  |
|         | Data type uint16, resolution 10 ms  Maximum value = 65535 = 655.35 seconds = 10.9 minutes  Factory default 0 (watchdog inactive)  Storage in EEPROM |  |  |











Software description Modbus RTU

V.1.9 | updated 10/2020

Page 81 of 99

While defining the time constant you have to respect several items, which effects how offen the slave has to be addressed:

- Baudrate of the system
- Number of slaves
- Length of the messages of each slave
- Priorities while addressing the slaves
- Transmission errors cause timeouts and repetitions
- Capability and processor load of the master

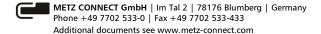
### **Function block Digital Input**

On each input a yellow LED shows the status.

| Discrete     | Discrete Inputs                                                                 |  |
|--------------|---------------------------------------------------------------------------------|--|
| Addr.        | Description                                                                     |  |
| 0 - 10<br>11 | Value of digital inputs 111 Value of digital input S0 (usable as counter input) |  |
|              | Value 0: off, 1: on                                                             |  |

| Input Re | Input Registers / Holding Registers |  |
|----------|-------------------------------------|--|
| Addr.    | Addr. Description                   |  |
| 70       | Value of digital inputs             |  |
|          | Same as Discrete Inputs 0-15        |  |

### **Function block Digital Output**


The relay outputs may be overdriven by push buttons, not the Photo-MOS outputs.

A long keystroke (> 1s) changes between automatic und manual operation.

A short keystroke (< 1s) changes in manual operation between Off and On.

On each output a yellow LED shows the status, a green LED shows if it is manual operation.

| Coils |                               |  |
|-------|-------------------------------|--|
| Addr. | Description                   |  |
| 0 - 3 | Value of relay outputs 14     |  |
|       | Value 0: off, 1: on           |  |
| 4 - 7 | Value of Photo-MOS outputs 14 |  |
|       | Value 0: off, 1: on           |  |









Software description Modbus RTU

V.1.9 | updated 10/2020

Page 82 of 99

| 16 - 19 | Operating mode of relay outputs 14 (read only)               |
|---------|--------------------------------------------------------------|
|         | Value 0: automatic mode, 1: manual mode<br>Storage in EEPROM |

| Holding | Holding Registers                                                 |  |  |
|---------|-------------------------------------------------------------------|--|--|
| Addr.   | Description                                                       |  |  |
| 71      | Value of digital outputs                                          |  |  |
|         | Same as Coils 0-15                                                |  |  |
| 72      | Operating mode (automatic, manual) of digital outputs (read only) |  |  |
|         | Same as Coils 16-31                                               |  |  |
|         | Storage in EEPROM                                                 |  |  |
| 73      | Default values of digital outputs                                 |  |  |
|         | Factory default 0                                                 |  |  |
|         | Storage in EEPROM                                                 |  |  |

# **Function block Analog Output**

On each output a yellow LED shows with its brightness the outputs voltage.

| Holding | Holding Registers                                                      |  |  |
|---------|------------------------------------------------------------------------|--|--|
| Addr.   | Description                                                            |  |  |
| 74 - 75 | Values of analog outputs O1O2                                          |  |  |
|         | Data type int16,<br>Range: value 0 = 0 Volt , value 32767 = 10.24 Volt |  |  |
| 78 - 79 | Default values of analog outputs O1O2                                  |  |  |
|         | Data type int16, Factory default 0, Storage in EEPROM                  |  |  |



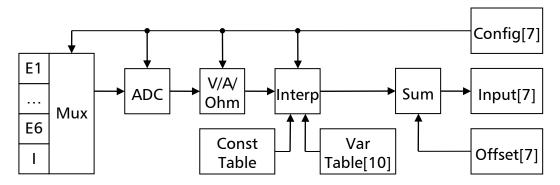


Software description Modbus RTU

V.1.9 | updated 10/2020

Page 83 of 99

### **Function block Analog Input**


#### Overview

The inputs E1 to E6 universally serve for voltage measuring (0 to 11.5 V) and for resistance measuring (40 Ohm to 4 MOhm). The input I serves for current measuring (0 to 22 mA).

An analog to digital conversion takes about 0.2 seconds and measurements are taken alternatively at the inputs. A measurement is taken at each input with an interval of about 1.8 seconds, it takes a bit longer when the resistance measuring range is changed because several measurements are taken.

There are operating mode to calculate the temperature of standard temperature sensors. The measured voltage or resistance value is converted with a value chart and interpolation into the temperature. There are several pre-programmed charts for standard sensors and a freely programmable chart with up to 10 nodes.

An offset can be added to the measured value. This allows an adaptation to the sensor and the supply line or a fine tuning.



E1...E6, I analog inputs, contacts E1 to E6 and I

Mux input switch

ADC analog-to-digital converter

V/A/Ohm calculate voltage / current / resistance

Interp interpolation with value charts

Sum addition of an offset

ConstTable value charts for standard sensors

Modbus registers:

Config Configuration Register Input Measured Value Register

Offset Offset Register

VarTable Value chart for specific sensor type









Software description Modbus RTU

V.1.9 | updated 10/2020

Page 84 of 99

# **Modbus register**

The messured values may be configured as float or 16 bit integer with leading sign.

| Input Re | Input Registers |          |                                                             |  |  |  |
|----------|-----------------|----------|-------------------------------------------------------------|--|--|--|
| Addr.    | Al              | Name     | Description                                                 |  |  |  |
| 0        | E1              | Input 17 | Measured value                                              |  |  |  |
| 2        | E2              |          | 2 consecutive registers, float in both or int16_t in first. |  |  |  |
| 4        | E3              |          |                                                             |  |  |  |
| 6        | E4              |          |                                                             |  |  |  |
| 8        | E5              |          |                                                             |  |  |  |
| 10       | E6              |          |                                                             |  |  |  |
| 12       | I               |          |                                                             |  |  |  |

| Holding            | Holding Registers |           |                                                                                            |  |  |
|--------------------|-------------------|-----------|--------------------------------------------------------------------------------------------|--|--|
| Addr.              | Al                | Name      | Description                                                                                |  |  |
| 0 - 1              | E1                | Offset 17 | Offset register                                                                            |  |  |
| 2 - 3              | E2                |           | The offset is added to the measured value.                                                 |  |  |
| 4 - 5              | E3                |           | 2 consecutive registers, float in both or int16_t in first,                                |  |  |
| 6 - 7              | E4                |           | same data type as measured value.                                                          |  |  |
| 8 - 9              | E5                |           | Factory default 0. Storage in EEPROM.                                                      |  |  |
| 10 - 11            | E6                |           | Storage in EEI Now.                                                                        |  |  |
| 12 -13             | I                 |           |                                                                                            |  |  |
| 14 -15             | -                 |           |                                                                                            |  |  |
| 16                 | E1                | Config 17 | Configuration register                                                                     |  |  |
| 17                 | E2                |           | Number (see below), used to select the                                                     |  |  |
| 18                 | E3                |           | - measuring range,                                                                         |  |  |
| 19                 | E4                |           | - data type of measured value (float / int16_t),                                           |  |  |
| 20                 | E5                |           | - unit of measured value,<br>- sensor characteristic.                                      |  |  |
| 21                 | E6                |           | Factory default 0 (Voltage 0-10V, float).                                                  |  |  |
| 22                 | I                 |           | Storage in EEPROM.                                                                         |  |  |
| 23                 | -                 |           |                                                                                            |  |  |
| 24 - 27            | -                 | VarTable  | Variable lookup table used for interpolation                                               |  |  |
| 28 - 31<br>32 - 35 |                   | 110       | Alternately temperature and resistance (see below). Float in 2 consecutive registers each. |  |  |
| 60 - 63            |                   |           | Factory default 0. Storage in EEPROM.                                                      |  |  |







Software description Modbus RTU

V.1.9 | updated 10/2020

Page 85 of 99

### **Configuration registers**

Input circuit and measuring range, data type and value unit and the sensor characteristic for usual temperature sensors are set for the 7 inputs with the 7 configuration registers. With the aid of the following charts the values of the registers are shown decimal and hexadecimal.

### Voltage, Current or resistance:

| Dec | Hex  | Measuring range  | Data type | Unit      | Maximum   |
|-----|------|------------------|-----------|-----------|-----------|
| 0   | 0x00 | Voltage 0-10V    | float     | 1 V       | 11.5 V    |
| 1   | 0x01 |                  | int16_t   | 0.3125 mV | 10.24 V   |
| 0   | 0x00 | Current 0-20mA   | float     | 1 mA      | 22 mA     |
| 1   | 0x01 |                  | int16_t   | 0.625 μA  | 20.48 mA  |
| 32  | 0x20 | Voltage 0-10V    | float     | 1 V       | 11.5 V    |
| 33  | 0x21 | Pullup 2kΩ at 5V | int16_t   | 0.3125 mV | 10.24 V   |
| 64  | 0x40 | Resistance       | float     | 1 Ω       | 4 ΜΩ      |
| 65  | 0x41 |                  | int16_t   | 0.1 Ω     | 3.2767 kΩ |
| 66  | 0x42 |                  | int16_t   | 1 Ω       | 32.767 kΩ |
| 67  | 0x43 |                  | int16_t   | 10 Ω      | 327.67 kΩ |
| 68  | 0x44 |                  | int16_t   | 100 Ω     | 3276.7 kΩ |

For voltage with type signed integer:  $10.24V/2^15 = 1V/3200 = 0.3125mV$ For current with type signed integer:  $20.48mA/2^15 = 1mA/1600 = 0.625\mu A$ 







Software description Modbus RTU

V.1.9 | updated 10/2020

Page 86 of 99

Temperature measurement with data type float:

| Dec | Hex  | Measuring range          | Data type | Unit | Range    |
|-----|------|--------------------------|-----------|------|----------|
| 128 | 0x80 | Sensor PT100             | float     | 1°C  | -50150°C |
| 130 | 0x82 | Sensor PT500             |           |      | -50150°C |
| 132 | 0x84 | Sensor PT1000            |           |      | -50150°C |
| 134 | 0x86 | Sensor NI1000-TK5000     |           |      | -50150°C |
| 136 | 0x88 | Sensor NI1000-TK6180     |           |      | -50150°C |
| 138 | 0x8A | Sensor BALCO 500         |           |      | -50150°C |
| 140 | 0x8C | Sensor KTY81-110 NXP     |           |      | -50150°C |
| 142 | 0x8E | Sensor KTY81-210 NXP     |           |      | -50150°C |
| 144 | 0x90 | Sensor NTC-1k8 Thermokon |           |      | -50150°C |
| 146 | 0x92 | Sensor NTC-5k Thermokon  |           |      | -50150°C |
| 148 | 0x94 | Sensor NTC-10k Thermokon |           |      | -50150°C |
| 150 | 0x96 | Sensor NTC-20k Thermokon |           |      | -50150°C |
| 152 | 0x98 | Sensor LM235             |           |      | -40120°C |

Temperature measurement with data type signed int (register number is by 1 larger than above):

| 129 | 0x81 | Sensor PT100                          | int16_t | 0.1°C | -50150°C     |
|-----|------|---------------------------------------|---------|-------|--------------|
| 131 | 0x83 | Sensor PT500                          |         |       | -50150°C     |
| 153 | 0x99 | Sensor LM235                          |         |       | <br>-40120°C |
|     |      | Register value is 1 larger than above |         |       |              |

Measurement with interpolation chart:

| Dec | Hex  | Measuring range  | Data type | Interpolation |
|-----|------|------------------|-----------|---------------|
| 240 | 0xF0 | Voltage 0-10V    | float     | linear        |
| 241 | 0xF1 |                  | int16_t   | linear        |
| 242 | 0xF2 |                  | float     | exponential   |
| 243 | 0xF3 |                  | int16_t   | exponential   |
| 244 | 0xF4 | Voltage 0-10V    | float     | linear        |
| 245 | 0xF5 | Pullup 2kΩ at 5V | int16_t   | linear        |
| 246 | 0xF6 |                  | float     | exponential   |
| 247 | 0xF7 |                  | int16_t   | exponential   |
| 248 | 0xF8 | Resistance       | float     | linear        |
| 249 | 0xF9 |                  | int16_t   | linear        |
| 250 | 0xFA |                  | float     | exponential   |
| 251 | 0xFB |                  | int16_t   | exponential   |





Software description Modbus RTU V.1.9 | updated 10/2020 Page 87 of 99

### Interpolation chart

This chart can be used to convert and linearize values for sensors without a characteristic already defined in the device. The chart contains up to 10 nodes of the sensor characteristic to interpolate between.

Example: transformation from resistance to temperature for temperature sensors.

Register contents is stored in the EEPROM.

The description refers to temperature sensors. Other sensors than temperature sensors (e.g. humidity) are also possible and it is also possible to measure voltage instead of resistance.

These properties can be set in the configuration register:

Measuring range voltage

voltage, pullup 2k at 5 V (for ex. for LM235)

resistance (normal case with temperature sensors)

Interpolation sensor characteristic is nearly linear

sensor characteristic is nearly exponential

(for NTCs)

Data type of measuring range float (unit 1 °C)

signed int (unit 0.1 °C)

| Node | Register-Address | Register-Address |
|------|------------------|------------------|
|      | Temperature      | Resistance       |
| 1    | 24-25            | 26-27            |
| 2    | 28-29            | 30-31            |
|      |                  |                  |
| 10   | 60-61            | 62-63            |

The nodes are filled beginning at the top of the chart, with a maximum of 10, and end with temperature = resistance = 0, if there are less nodes. Temperature and resistance values have to be in ascending or descending order. So the combination 0,0 as a node is not allowed. Data type in the registers: float temperature, float resistance.





Software description Modbus RTU

V.1.9 | updated 10/2020

Page 88 of 99

# **Function duty cycle**

The duty cycle of the counter input S0+/S0- will be messured. Sample rate is 1 ms.

# **Modbus register**

| Discrete | Discrete Inputs                                               |  |  |
|----------|---------------------------------------------------------------|--|--|
| Addr.    | Addr. Description                                             |  |  |
| 11       | Value of counter input (switch connected to digital input S0) |  |  |
|          | 0: inactive (switch open), 1: active (switch closed)          |  |  |

| Input Re | Input Registers / Holding Registers                                                                                                        |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Addr.    | Description                                                                                                                                |  |  |
| 70       | Value of digital inputs (read only)                                                                                                        |  |  |
|          | Same as Discrete Inputs 0-15                                                                                                               |  |  |
| 82 - 83  | Active time of counter input                                                                                                               |  |  |
|          | May be written to initialize second count, simultaneously resets millisecond count Data type uint32, resolution 1 second Storage in EEPROM |  |  |







Software description Modbus RTU

V.1.9 | updated 10/2020

Page 89 of 99

## **Function pulse counter**

The pulse counter records pulses of a energy meter with S0 interface, which is connected to the counter input S0+/S0-. There are also other applications possible.

# **Modbus register**

| Discrete Inputs |      |                                                               |
|-----------------|------|---------------------------------------------------------------|
| Addr.           | Name | Description                                                   |
| 11              | IN_C | Value of counter input (switch connected to digital input S0) |
|                 |      | 0: off (switch open), 1: on (switch closed)                   |

| Input Reg | Input Registers |                                                                  |  |
|-----------|-----------------|------------------------------------------------------------------|--|
| Addr.     | Name            | Description                                                      |  |
| 70        | INPUT           | Value of digital inputs                                          |  |
|           |                 | Same as Discrete Inputs 0-15                                     |  |
| 84 - 87   | IZ              | Pulse counter                                                    |  |
|           |                 | Data type uint64 (lower 48 bits are used, highest 16 bits are 0) |  |
| 88 - 89   | BZ              | Calculated counter reading                                       |  |
|           |                 | Data type uint32                                                 |  |

| Holding | Holding Registers |                                                                                    |  |
|---------|-------------------|------------------------------------------------------------------------------------|--|
| Addr.   | Name              | Description                                                                        |  |
| 84 - 87 | IT                | Copy of pulse counter when key was pressed                                         |  |
|         |                   | Value may be overwritten                                                           |  |
|         |                   | Data type uint64 (lower 48 bits are used, highest 16 bits are 0) Storage in EEPROM |  |
| 88 - 89 | AZ                | Initial calculated counter reading                                                 |  |
|         |                   | Data type uint32 Factory default 0 Storage in EEPROM                               |  |
| 90      | IE                | Pulses per unit                                                                    |  |
|         |                   | Data type uint16                                                                   |  |
|         |                   | Factory default 1                                                                  |  |
|         |                   | Storage in EEPROM                                                                  |  |
| 91      | WI                | Ratio of current transformer                                                       |  |
|         |                   | Data type uint16                                                                   |  |
|         |                   | Factory default 1                                                                  |  |
|         |                   | Storage in EEPROM                                                                  |  |







Software description Modbus RTU

V.1.9 | updated 10/2020

Page 90 of 99

| Holding | Registers |                                                      |
|---------|-----------|------------------------------------------------------|
| Addr.   | Name      | Description                                          |
| 92      | WU        | Ratio of voltage transformer                         |
|         |           | Data type uint16                                     |
|         |           | Factory default 1                                    |
|         |           | Storage in EEPROM                                    |
| 93      | WP        | Mode of calculation with current/voltage transformer |
|         |           | Data type: flag in bit 0                             |
|         |           | Value 01, see below                                  |
|         |           | Factory default 0                                    |
|         |           | Storage in EEPROM                                    |
| 94      | ZS        | Format of counter display                            |
|         |           | Data type uint16                                     |
|         |           | High byte contains total counter digits,             |
|         |           | range 09, factory default 7,                         |
|         |           | higher values are limited to 9                       |
|         |           | Low byte contains fractional counter digits,         |
|         |           | range 03, factory default 1,                         |
|         |           | higher values are limited to 3                       |
|         |           | Storage in EEPROM                                    |
| 95      | TA        | Flag for enabling the key                            |
|         |           | Data type: flag in bit 0                             |
|         |           | Value 0: key is disabled, 1: key is enabled          |
|         |           | Factory default 1                                    |
|         |           | Storage in EEPROM                                    |



Page 91 of 99



Software description Modbus RTU

### Operating mode for calculation with transformation factor

In the WP register, there is a code 0...1 that determines, together with the transformation factors WI and WU, the way how they are included in calculation. WP, WI and WU depend on whether the transformers are switched by the counters, whether the counter indicates the consumption in a primary or secondary way and whether the emitted pulses correspond primarily or secondarily to the consumption.

V.1.9 | updated 10/2020

A difference must be made between the following electricity meter types:

## Type 1: Directly measuring counter, display: primary, pulse: primary

Note: Indicates the real consumption

Species: DIN rail counter with mechanical drum-type

counting mechanism, Ferraris counter

Formula type: WP = 0Factors: WI = WU = 1

 $BZ = (----- + AZ) \cdot WI \cdot WU$ , BZ = counter reading = consumption

## Type 2: Transformer counter, display: primary, pulse: secondary

Note: Indicates the real consumption counter with LCD display

Formula type: WP = 1

Factors: WI and WU correspond to the transformers

# Type 3: Transformer counter, display: primary, pulse: primary

Note: Indicates the real consumption

Species: counter with LCD display, multi-function counters

Formula type: WP = 0Factors: WI = WU = 1

IZ - ITBZ = ( ----- + AZ ) · WI · WU , BZ = counter reading = consumption IE





Software description Modbus RTU

V.1.9 | updated 10/2020

Page 92 of 99

### Type 4: Transformer counter, display: secondary, pulse: secondary

Note: Indicates the consumption reduced

by the transformation factors

Species: DIN rail counter with mechanical drum-type

counting mechanism, Ferraris counter

Formula type: WP = 0

Consumption and display of the transformer counter are different. Both can be calculated using a different configuration (WI, WU).

Factors: WI = WU = 1:

The calculated counter reading corresponds to the

display of the transformer counter.

Species: DIN rail counter with mechanical drum-type

counting mechanism, Ferraris counter.

$$IZ - IT$$
  $BZ = (---- + AZ) \cdot WI \cdot WU$ ,  $BZ = counter\ reading\ or\ consumption$ 

### Start of operation

The user reads on site the initial count from the electricity meter and presses the key on the MR-Multi I/O. After this key press, the pulse counter of register IZ is copied into register IT. Afterwards, the user configures the MR-Multi I/O via the Modbus using a service program. The following must be entered:

- initial counter reading from the counter
- pulses per unit,
  - e.g. indication on the electricity meter 2000 pulses per kWh
- formula type for calculation with transformation factors
- factor for current transformation,
  - e.g. indication on the transformer 200/5A  $\rightarrow$  factor = 40
- factor for voltage conversion,
  - e.g. indication on the transformer 20000/100V  $\rightarrow$  factor = 200
- number of digits and places after the decimal point
- deactivate the key to protect the IT register





Software description Modbus RTU

V.1.9 | updated 10/2020

Page 93 of 99

### **Details for calculation**

The calculated counter reading should behave exactly as the electricity meter. This requires that there should be no overflows and rounding errors for the intermediate results. Therefore, particularly large data types are used for counting and calculation

Every 60 milliseconds, a pulse can be emitted by the electricity meter. This results in up to 1,440,000 pulses per day or about 526,000,000 pulses per year.

If the pulse counter was realized with 4 bytes, it could be count to 4,294,967,295. At highest pulse frequency, this would be enough for approx. 8.2 years.

Therefore it is provided with 6 bytes and cannot overflow.

The number of places after the decimal point is considered as an additional multiplier with a power of ten during the calculation. Furthermore, it determines the place of the decimal point in the display of BZ and AZ.

As for the electricity counter which only has a specified number of decimal places, the number of places is limited with the last step in the calculation. This is why the calculated counter reading of the MR-Multi I/O overflows to 0 as often as the counter reading of the electricity meter.

### Calculated counter reading if WP = 0:

### Calculated counter reading if WP = 1:

### Note for other applications

For applications with a current meter it is required in order to maintain consistency of data that the pulse counter IZ cannot be deleted. However, it is possible to create a deletable counter with the calculated meter reading BZ by changing the values of IT and/or AZ via the bus.

A simple example without the different factors:

Configuration with: WP = 0, WU = WI = 1, IE = 1, places after decimal point = 0

Calculation: BZ = IZ - IT + AZ

When writing AZ = 0 and IT = IZ, the result is BZ = 0.









Software description Modbus RTU

V.1.9 | updated 10/2020 Page 94 of 99

## Modbus Function "43 /14 (0x2B / 0x0E) Read Device Identification"

### Request

Read Device ID code: 0x01 Object ID 0x00

### Response

Device ID code 0x01
Conformity level 0x01
More follows 0x00
Next object ID 0x00
Number of objects 0x03
Object ID 0x00
Object Length 0x11

Object Value "METZ CONNECT GmbH"

Object ID 0x01 Object Length 0x0B

Object Value "MR-Multi-IO"

Object ID 0x02
Object Length 0x04
Object Value "V1.1"





Software description Modbus RTU

V.1.9 | updated 10/2020

Page 95 of 99

### MR-LD6

#### I/O commands

### Modbus Function "01 (0x01) Read Coils"

Modbus Function "03 (0x03) Read Holding Registers" (R)

Modbus Function "04 (0x04) Read Input Registers" (R)

Modbus Function "06 (0x06) Write Single Register" (W)

Modbus Function "16 (0x10) Write Multiple Registers" (W)

#### Information

| Read Discrete Inputs     | (0 - 15) |
|--------------------------|----------|
| Read Coils               | (0 - 31) |
| Write Multiple Coils     | (0 - 31) |
| Write Single Coil        | (0 - 31) |
| Read Input Registers     | (0 - 99) |
| Read Holding Registers   | (0 - 99) |
| Write Multiple Registers | (0 - 99) |
| Write Single Register    | (0 - 99) |

### **Function block Bus-Watchdog**

The Modbus communication may be controlled by a watchdog timer. The timer restarts with every valid message, that was directed to the device. Only the devices address is relevant, not the rest of the message. If the bus master or the connection fails and the timer will elapse, the outputs switch to their default values (save state) and the red LED will shine. With the time constants value of 0 the watchdog timer is inactive.

| Holding | Holding Registers |                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|---------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Addr.   | Description       |                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 66      | BusTimeout        | Time constant of communication monitoring The time applies only when the relays are controlled via Modbus. The relays switch into the inactive state when the timeout is reached. The time restarts with each valid message that is addressed to the device. Data type uint16, resolution 10 ms Maximum value = 65535 (= 655.35 seconds = 10.9 minutes Factory default 0 (watchdog inactive) Storage in EEPROM |  |









Software description Modbus RTU

V.1.9 | updated 10/2020

Page 96 of 99

When defining the time constant several items have to be considered that influence how often a specific slave will be addressed:

- Baud rate of the system
- Number of slaves
- Length of the messages of each slave
- Priorities while addressing the slaves
- Transmission errors cause timeouts and repetitions
- Capability and processor load of the master

| Discrete | Discrete Inputs (Read-Only)  |                                                                                                                   |  |
|----------|------------------------------|-------------------------------------------------------------------------------------------------------------------|--|
| Addr.    | Name                         | Description                                                                                                       |  |
| 05       | LeakDetect_1<br>LeakDetect 6 | Status bits for the identified leaks                                                                              |  |
|          | _                            | A bit is set when SensorResist $<$ SensorThresh. The SensorThresh hysteresis of $\pm$ 5 % applies for comparison. |  |
| 1621     | CableBreak_1<br>CableBreak_6 | Status bits for the identified cable breaks                                                                       |  |
|          |                              | A bit is set when ZenerVoltage > ZenerThresh.                                                                     |  |
|          |                              | The ZenerThresh hysteresis of $\pm$ 2.5 % applies for                                                             |  |
|          |                              | comparison.                                                                                                       |  |

| Input Re | Input Registers (Read-Only)      |                                                                                               |  |
|----------|----------------------------------|-----------------------------------------------------------------------------------------------|--|
| Addr.    | Name                             | Description                                                                                   |  |
| 0        | LeakDetect                       | Status register for identified leaks in bit 05, the bits LeakDetect_16 are collected here     |  |
| 1        | CableBreak                       | Status register for cable breaks in bit 05, the bits CableBreak_16 are collected here         |  |
| 27       | SensorResist_1 SensorResist_6    | Measured resistance values of the sensor, resolution, unit: 100 Ohm Maximum: 10000 (= 1 MOhm) |  |
| 813      | ZenerVoltage_1<br>ZenerVoltage_6 | Voltages at the Z-diodes for wire break monitoring, resolution, unit: 100 mV                  |  |





Software description Modbus RTU

V.1.9 | updated 10/2020

Page 97 of 99

| Coils |                    |                                                                                                                                                                      |
|-------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Addr. | Name               | Description                                                                                                                                                          |
| 01    | Relay_1<br>Relay_2 | Switching state of a relay ( $0 = ON$ , $1 = OFF$ ) read-only for leakage identification or level monitoring, also writable when controlled via Modbus.              |
|       |                    | The inactive states are defined in RelayPolarity, the active states are oppositely in each case.                                                                     |
|       |                    | Leakage message:<br>Active state if a leak is signaled.                                                                                                              |
|       |                    | Level monitor: Active state if both electrodes are touched, inactive state if none of the electrodes is touched keep state if only one of the electrodes is touched. |
|       |                    | Control via Modbus: Basic setting is the inactive state.                                                                                                             |

| Holding | Holding Registers |                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|---------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Addr.   | Name              | Description                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 0       | Relay             | Switching state of the relays in bit 01, the bits Relay_12 are combined here.                                                                                                                                                                                                                                                                                                                     |  |
| 1       | RelayPolarity     | The two relays have make contacts with switching state "OFF" or "ON".  They are triggered with the states "inactive" or "active" by the leakage/level monitoring.  The switching state can be inverted with this register. Bit 01 correspond to the inactive states of the two relays:  0: inactive = OFF, active = ON,  1: inactive = ON, active = OFF.  Factory default 0b00, Storage in EEPROM |  |





Software description Modbus RTU

V.1.9 | updated 10/2020

Page 98 of 99

| Holding  | Holding Registers                |                                                                                                                                                                                                                                                                                                         |  |  |
|----------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Addr.    | Name                             | Description                                                                                                                                                                                                                                                                                             |  |  |
| 27       | SensorThresh_1<br>SensorThresh_6 | Switching thresholds for the sensor resistances  Data type uint16, Resolution: 100 Ohm, Factory default 200 (= 20 kOhm), Storage in EEPROM                                                                                                                                                              |  |  |
| 813      | ZenerThresh_1<br>ZenerThresh_6   | Switching thresholds for the Z-diodes for wire break monitoring  Data type uint16, Resolution 100 mV, Factory default 110 (= 11 V), Storage in EEPROM                                                                                                                                                   |  |  |
| 14<br>15 | Mode_1<br>Mode_2                 | Operating mode for relay 1 and 2  0: Leakage message, 1: Level monitor (input 1 top, 2 bottom), 2: Level monitor (input 3 top, 4 bottom), 3: Level monitor (input 5 top, 6 bottom), otherwise: control via Modbus.  Factory default 0, Storage in EEPROM                                                |  |  |
| 16<br>17 | LeakEnable_1<br>LeakEnable_2     | Analog inputs for leakage message with relays 1 / 2.  If bits 05 are set, the respective bits in LeakDetect in the operating mode leakage message make relays 1 or 2 switch into the active state.  Factory default 0b000111 (LeakEnable_1), Factory default 0b111000 (LeakEnable_2), Storage in EEPROM |  |  |
| 18       | ZenerEnable                      | Inputs with installed cable monitoring.  The respective bits in CableBreak are only set in case of a cable break if bits 05 are set.  Factory default 0b111111, Storage in EEPROM                                                                                                                       |  |  |





Page 99 of 99



Software description Modbus RTU

We realize ideas

| Holding Registers |                             |                                                                                                                                              |  |  |
|-------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Addr.             | Name                        | Description                                                                                                                                  |  |  |
| 19<br>20          | BreakEnable_1 BreakEnable 2 | Inputs for the cable break message with relays 1 / 2.                                                                                        |  |  |
|                   | _                           | If bits 05 are set, the respective bits in CableBreak in the operating mode leakage message make relays 1 or 2 switch into the active state. |  |  |
|                   |                             | Factory default 0b000000 (BreakEnable_1), Factory default 0b000000 (BreakEnable_2), Storage in EEPROM                                        |  |  |

V.1.9 | updated 10/2020

## Modbus Function "43 /14 (0x2B / 0x0E) Read Device Identification"

| Request |
|---------|
|---------|

| Read Device ID code: | 0x01 |
|----------------------|------|
| Object ID            | 0x00 |

#### Response

| Device ID code    | 0x01 |
|-------------------|------|
| Conformity level  | 0x01 |
| More follows      | 0x00 |
| Next object ID    | 0x00 |
| Number of objects | 0x03 |
| Object ID         | 0x00 |
| Object Length     | 0x11 |
| Olada at Malina   | // \ |

Object Value "METZ CONNECT GmbH"

Object ID 0x01
Object Length 0x06
Object Value "MR-LD6"
Object ID 0x02
Object Length 0x04
Object Value "V1.0"

